Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (1)
( vì là góc tạo bởi một tiếp tuyến và một dây cung đi qua tiếp điểm A của (O')).
và (2)
góc nội tiếp của đường tròn (O') chắn cung
Từ (1), (2) suy ra
(3)
Chứng minh tương tự với đường tròn (O), ta có:
(4)
Hai tam giác ABD và ABC thỏa (3), (4) suy ra cặp góc thứ 3 của chúng bằng nhau, vậy =
+ Trên đường tròn tâm O:
là góc tạo bởi tiếp tuyến AD và dây AB
+ Trên đường tròn tâm O’:
là góc tạo bởi tiếp tuyến AC và dây AB
Kiến thức áp dụng
Trong một đường tròn:
+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
Bài 2:
O A B C E D M
Ta thấy EB // AC nên \(\frac{EB}{MA}=\frac{ED}{DA}\Rightarrow AM.ED=EB.DA\) (1)
Do EB//AC nên \(\widehat{BCA}=\widehat{CBE}\Rightarrow\widebat{EC}=\widebat{CB}\)
Vậy thì \(2.\widehat{DMC}=\widebat{BC}-\widebat{DC}=\widebat{EC}+\widebat{EB}-\widebat{DC}=\left(\widehat{CB}-\widebat{DC}\right)+\widebat{EB}=\widebat{ED}=2.\widehat{DCE}\)
\(\Rightarrow\widehat{DMC}=\widehat{DCE}\)
Mà \(\widehat{DEC}=\widehat{DCM}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
\(\Rightarrow\Delta EDC\sim\Delta CDM\left(g-g\right)\Rightarrow\frac{ED}{CD}=\frac{EC}{CM}\Rightarrow CM.ED=CD.EC\) (2)
Từ (1) và (2) ta thấy, muốn chứng minh CM = MA, ta chỉ cần chứng minh EB.DA = CD.EC
Lại có \(\widebat{CE}=\widebat{CB}\Rightarrow CE=CB\)
Vậy ta cần chứng minh: EB.DA = CD.BC
Ta có \(\widehat{DAC}=\frac{\widebat{EC}-\widebat{DC}}{2}=\frac{\widebat{BC}-\widebat{DC}}{2}=\frac{\widebat{DB}}{2}=\widehat{DCB}\)
Vậy nên ta có ngay \(\Delta DBC\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{BD}{CD}=\frac{BC}{CA}\Rightarrow BC.CD=BD.CA\left(3\right)\)
Ta dễ dàng thấy ngay \(\Delta BDA\sim\Delta EBA\left(g-g\right)\Rightarrow\frac{BD}{EB}=\frac{DA}{BA}=\frac{DA}{CA}\Rightarrow EB.DA=BD.CA\left(4\right)\)
Từ (3) và (4) ta có \(EB.DA=BC.CD\)
Từ đó suy ra MC = MA hay M là trung điểm của AC (đpcm).
a: góc CMO+góc CNO=180 độ
=>CMON nội tiếp
b: Xét ΔCMA và ΔCBM có
góc CMA=góc CBM
góc MCA chung
=>ΔCMA đồng dạng với ΔCBM
=>CM^2=CA*CB
+ Trên đường tròn tâm O:
là góc tạo bởi tiếp tuyến AD và dây AB
+ Trên đường tròn tâm O’:
là góc tạo bởi tiếp tuyến AC và dây AB