Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Bạn tham khảo ở đây:
Câu hỏi của Linh Chi - Toán lớp 10 | Học trực tuyến
Câu 1:
Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=3\)
\(\Rightarrow\) Đường kính đường tròn bằng 6
Do d cắt đường tròn theo dây cung có độ dài bằng 6 \(\Leftrightarrow\) d đi qua tâm I
Mà d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)
Đường thẳng d1 có hệ số góc k1 = 3
Đường thẳng d2 có hệ số góc k2 = -4
Khi đó, góc giữa 2 đường thẳng đã cho được xác định bởi:
tan α = k − 1 k 2 1 + k 1 . k 2 = 3 − ( − 4 ) 1 + 3. ( − 4 ) = 7 11
ĐÁP ÁN D
ĐÁP ÁN A
Đường thẳng d1 có VTPT n 1 → ( 2 ; − 3 )
Đường thẳng d2 có VTPT n 2 → ( 3 ; 1 )
Cosin góc giữa hai đường thẳng đã cho là:
cos α = 2.3 + ( − 3 ) .1 2 2 + ( − 3 ) 2 . 3 2 + 1 2 = 3 130
ĐÁP ÁN B
Đường thẳng d1 có VTPT n 1 → ( 1 ; 3 )
Đường thẳng d2 có VTPT n 2 → ( 2 ; − 1 )
Cosin góc giữa hai đường thẳng đã cho là:
cos α = 1.2 + 3. ( − 1 ) 1 2 + 3 2 . 2 2 + ( − 1 ) 2 = 1 5 2
Lại có; sin 2 α + c os 2 α = 1 ⇔ sin 2 α = 1 − c os 2 α = 1 − 1 50 = 49 50
Do 0 0 < α < 90 0 ⇒ sin α > 0 ⇒ sin α = 7 5 2
ĐÁP ÁN B
Xét hai đường thẳng d1 : y = k 1 x + m 1 và d2: y = k 2 x + m 2
Khi đó, góc giữa hai d đường thẳng d1 và d2 được xác định bởi: tan α = k 1 − k 2 1 + k 1 . k 2
Phương pháp giải
- Nhận xét vị trí của tâm đường tròn so với đường thẳng đã cho.
- Từ đó suy ra cách tìm tọa độ điểm AA.
Hai đường thẳng lần lượt có các vectơ chỉ phương là u 1 = 1 ; 3 và u 2 = − 1 ; 2 nên ta có cos d 1 , d 2 = cos u 1 → , u 2 → = 1. − 1 + 3.2 1 2 + 3 2 . − 1 2 + 2 2 = 1 2 .
Do đó góc giữa hai đường thẳng là α = 45 ° . Đáp án là phương án B.