K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

a)Sắp xếp : \(f\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

\(g\left(x\right)=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}x\)

Ta có : \(f\left(x\right)+g\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}x\)

\(=12x^4-11x^3+2x^2-\dfrac{1}{2}x\)

\(f\left(x\right)-g\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x+x^5-5x^4+2x^3-4x^2+\dfrac{1}{4}x\)

\(=2x^5+2x^4-7x^3-6x^2\)

25 tháng 1 2017

f(x) + g(x)

= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) + (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)

= x5​ - 3x2 + 7x4 - 9x3 + x2 - 1/4x + 5x4 - x5 +x2 - 2x3 + 3x2 - 1/4

=12x4 - 11x3 + 2x2 - 1/4x - 1/4

f(x) - g(x)

= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) - (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)

=​ = x5​ - 3x2 + 7x4 - 9x3 + x2 - 1/4x - 5x4 + x5 - x2 + 2x3 - 3x2 + 1/4

= 2x5 + 2x4 - 7x3 - 6x2 - 1/4x + 1/4

11 tháng 1 2018

f(x) +g(x) + h(x)

=(2x4 - x3 + x - 3 + 5x5) + (-x5 + 5x2 +4x + 2 + 3x5) + (x2 + x + 1 + 2x3 + 3x4)

= 2x4 - x3 + x - 3 + 5x5 +(-x5) + 5x2 +4x + 2 + 3x5 + x2 + x + 1 + 2x3 + 3x4

= 7x5 + 5x4 + x3 +x2 + 6x

f(x) - g(x) - h(x)

=(2x4 - x3 + x - 3 + 5x5) - (-x5 + 5x2 +4x + 2 + 3x5) - (x2 + x + 1 + 2x3 + 3x4)

=2x4 - x3 + x - 3 + 5x5 +x5 - 5x2 -4x - 2 -3x5 - x2 - x - 1 - 2x3 - 3x4

= 3x5 - x4 - 3x3 - 6x2 - 4x - 6

15 tháng 5 2020
https://i.imgur.com/G49B1m2.jpg
8 tháng 1 2020

dễ mà bn

a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)

\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)

\(=6x^5-6x^4+4x^3-x^2-4x+11\)

f(x)-g(x)-h(x)

\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)

\(=16x^5-14x^4+10x^3-7x^2+6x+7\)

b: f(x)+2g(x)=0

\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)

\(\Leftrightarrow2x^2-8x+6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

=>x=1 hoặc x=3

6 tháng 6 2018

Giải:

a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)

\(\Leftrightarrow h\left(x\right)=x+3x^2\)

b) Để đa thức h(x) có nghiệm

\(\Leftrightarrow h\left(x\right)=0\)

\(\Leftrightarrow x+3x^2=0\)

\(\Leftrightarrow x\left(1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...