Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tổng của M(x) + N(x) = P(x). Ta có:
P(x) = (x4 + 5x3 - x2 + x - 0,5) + (3x4 - 5x2 - x - 2,5)
P(x) = x4 + 5x3 - x2 + x - 0,5 + 3x4 - 5x2 - x - 2,5
P(x) = x4 + 3x4 + 5x3 - x2 - 5x2 + x - x - 0,5 - 2,5
P(x) = 4x4 + 5x3 - 6x2 - 3
--> Suy ra tổng của M(x) và N(x) = 4x4 + 5x3 - 6x2 - 3
Lời giải:
a)
$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$
$=6x^5-2x^4-4x^3+3x$
$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$
$=-6x^5+2x^4+4x^3+4x^2-3x-1$
b)
$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$
$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$
$=213$
c)
$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$
$=4x^2-1$
$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$
$=12x^5-4x^4-8x^3-4x^2+6x+1$
d)
$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$
$\Leftrightarrow x=\pm \frac{1}{2}$
Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$
a) \(M\left(x\right)+N\left(x\right)=\left(x^4+5x^3-x^2+x-0,5\right)+\left(3x^4-5x^2-x-2,5\right)\)
\(=\left(x^4+3x^4\right)+5x^3-\left(x^2+5x^2\right)+\left(x-x\right)-\left(0,5+2,5\right)\)
\(=4x^4+5x^3-6x^2-3\)
b) \(M\left(x\right)-N\left(x\right)=\left(x^4+5x^3-x^2+x-0,5\right)-\left(3x^4-5x^2-x-2,5\right)\)
\(=x^4+5x^3-x^2+x-0,5-3x^4+5x^2+x+2,5\)
\(=\left(x^4-3x^4\right)+5x^3-\left(x^2-5x^2\right)+\left(x+x\right)-\left(0,5-2,5\right)\)
\(=-2x^4+5x^3+4x^2+2x+2\)
\(M\left(x\right)+N\left(x\right)\)
\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)
\(=2x^4+5x^3-3x^2+2x-3\)
\(M\left(x\right)-N\left(x\right)\)
\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)
\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)
\(=-2x^4+5x^3+x^2-2x-5\)
\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)
\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)
\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)
=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)
= \(x^2-2x+1\)
Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.
+) M(x) + N(x)
= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5
= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)
= 4x4 + 5x3 – 6x2 – 3
Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3
+) M(x) – N(x)
= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5
= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)
= -2x4 + 5x3 + 4x2 + 2x + 2
Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2