Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có u n = 4 + ( n − 1 ) .3 = 3 n + 1 với 1 ≤ n ≤ 100
v k = 1 + ( k − 1 ) .5 = 5 k − 4 với 1 ≤ k ≤ 100
Để một số là số hạng chung của hai cấp số cộng ta phải có
3 n + 1 = 5 k − 4 ⇔ 3 n = 5 ( k − 1 )
⇒ n ⋮ 5 tức là n = 5 t với t ∈ ℤ
Vì 1 ≤ n ≤ 100 nên 1 ≤ t ≤ 20 . Do đó có 20 số hạng chung của hai dãy số.
Chọn đáp án B
Thay $n=3$ ta có: \(\left\{\begin{matrix} \frac{U_3-U_1}{3}=1\\ U_1-U_3=-4\end{matrix}\right.\) (vô lý)
Bạn xem lại đề.
Công sai d có thể xác định bằng công thức:
\(-4=U_1-U_3=U_1-(U_2+d)=U_1-(U_1+d+d)=-2d\)
\(\Rightarrow d=2\)
S= u1.u1 + u2.u2+...+un.un
S = u1.(u2 - d) + u2.(u3 - d)+...+un(un+1 - d)
S = u1.u2 + u2.u3 +...+un.un+1-d(u1+u2+...+un)
Đặt A = u2.u3 + u3.u4+...+un.un+1
3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1)
3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u5 - u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1
3d.A = un.un+1.un+2 - u1.u2.u3
3d.A = (u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)
A = [(u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d)
S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2
Chọn đáp án B
Ta có: un = 4+ (n - 1).3 = 3n + 1,
1 ≤ n ≤ 100
vk = 1+ (k - 1).5 = 5k - 4,
1 ≤ k ≤ 100
Để một số là số hạng chung của hai cấp số cộng ta phải có:
3n +1 = 5k - 4 ⇔3n = 5(k-1)⇒ n ⋮ tức là n = 5t.
Khi đó; 3.5t = 5(k - 1) hay 3t = k - 1 nên k =1 + 3t, t ∈ Z
Vì 1 ≤ n ≤ 100 nên 1 ≤ t ≤ 20 . Mà t ∈ Z ⇒ t ∈ 1 ; 2 ; 3 ; . . . ; 19 ; 20
Ứng với 20 giá trị của t cho 20 giá trị của n và 20 giá trị của k.
Vậy có 20 số hạng chung của hai dãy