Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆AOH và ∆BOH có:
∠AOH = ∠BOH (gt)
OH là cạnh chung
∠AHO = ∠OHB (=900)
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA = OB(cmt)
∠AOC = ∠BOC(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(c.g.c)
Suy ra: CA=CB(cạnh tương ứng)
∠OAC = ∠OAB( góc tương ứng).
O x y t H A B C
a) Xét2 \(\Delta vuông\)AHO va BHO co
góc AOH = góc BOH ( Ot là tia phân giác góc xOy)
OH là cạnh chung
\(\Rightarrow\Delta AHO=\Delta BHO\)(góc vuông,góc nhọn kề cạnh ấy)
\(\Rightarrow OA=OB\)(2 cạnh tương ứng)
b) Xét \(\Delta OAC\)và \(\Delta OBC\)có:;
OA = OB ( chứng minh trên)
góc AOH = góc BOH ( giả thiết )
OC là cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\)(c.g.c)
\(\Rightarrow CA=CB\)( 2 cạnh tương ứng)
và góc OAC = góc OBC ( 2 góc tương ứng)
ΔAOC và ΔBOC có:
OA = OB (cmt)
∠ AOC = ∠ BOC (vì Ot là tia phân giác góc xOy)
OC cạnh chung
⇒ ΔAOC = ΔBOC (c.g.c)
⇒ CA = CB (hai cạnh tương ứng)
∠ OAC = ∠ OBC ( hai góc tương ứng).
A B C H O x y t 1 2
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
a) ∆AOH và ∆BOH có:=(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
=(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
= ( góc tương ứng).
Bạn vẽ hình nhé mình dùng đ t không vẽ được.
a,
Do 0t là phân giác của góc x0y nên:
góc x0t=góc y0t
Hay góc AOH=góc BOH
AB_|_OH (gt)
=>góc OHA=góc OHB=1 vuông
OH cạnh chung
=> tam giác AOH=tam giác BOH(g.c.g)
=>OA=OB (đpcm) (1)
b,
Chọn C nằm ngoài điểm O và H thuộc Ot
Do tam giác AOH = tam giác BOH (cmt)
=> AH=BH
Mà góc AHC=góc BHC=1vuông (vì AB_|_Ot tại H)
HC cạnh chung 2 tam giác AHC và tam giác BHC
=> tam giác AHC = tam giác BHC(c.g.c)
=>AC=BC (đpcm) (2)
Từ (1) ,(2) => tam giác AOC=tam giác BOC (c.g.c)
Mặt khác,ta lại có:
Tam giác AOB cân tại O vì:
OA=OB (theo (1))
=>góc OAH = góc OBH (3)
Tam giác ACB cân tại C vì:
AC=BC.( Theo (2))
=>góc CHA=góc CBH (4)
Từ. (3) ,(4) suy ra:
góc OAH+góc CAH= góc OBH+góc CBH
=góc OAC=góc OBC (đpcm)
a) ∆AOH và ∆BOH có:ˆAOHAOH^=ˆBOHBOH^(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
ˆOACOAC^=ˆOABOAB^(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
ˆOACOAC^= ˆOBCOBC^( góc tương ứng).
Xem thêm tại: http://loigiaihay.com/bai-35-trang-123-sach-giao-khoa-toan-7-tap-1-c42a5064.html#ixzz48jIcx
a) Xét ΔAOH∆AOH và ΔBOH∆BOH có:
+) ˆAOH=ˆBOHAOH^=BOH^ (vì OtOt là phân giác)
+) OHOH là cạnh chung
+) ˆAHO=ˆBHO(=900)AHO^=BHO^(=900)
Suy ra ΔAOH=ΔBOH∆AOH=∆BOH ( g.c.g)
Suy ra OA=OBOA=OB (hai cạnh tương ứng).
b) Xét ΔAOC∆AOC và ΔBOC∆BOC có:
+) OA=OBOA=OB (cmt)
+) ˆAOC=ˆBOCAOC^=BOC^ (gt)
+) OCOC cạnh chung.
Suy ra ΔAOC=ΔBOC∆AOC=∆BOC (c.g.c)
Suy ra: CA=CBCA=CB ( hai cạnh tương ứng)
ˆOAC=ˆOBCOAC^=OBC^ ( hai góc tương ứng).
ΔAOH và ΔBOH có
∠ AOH = ∠ BOH (vì Ot là tia phân giác góc xOy)
OH cạnh chung
∠ OHA = ∠ OHB (= 90º)
⇒ ΔAOH = ΔBOH (g.c.g)
⇒ OA = OB (hai cạnh tương ứng)