Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △OAC vuông tại A và △OBD vuông tại B
Có: OA = OB (gt)
COA = DOB (2 góc đối đỉnh)
=> △OAC = △OBD (cgv-gnk)
b, Xét △OCE và △ODE cùng vuông tại O
Có: OE là cạnh chung
OC = OD (△OAC = △OBD)
=> △OCE = △ODE (2cgv)
c, Ta có: DE = BE + BD mà BD = AC (△OBD = △OAC) ; CE = DE (△OCE = △ODE)
=> CE = BE + AC (đpcm)
ý AC = 1/2 BC còn có điều kiện gì nữa ko??
a) Gọi H là giao điểm của AB và OM. Xét hai tam giác vuông AOM và BOM. Ta có cạnh huyền OM chung, MA = MB (vì M thuộc tia phân giác của góc O). Vậy ∆AOM = ∆BOM. Suy ra OA = OB. Từ đó có ∆AOH = ∆BOH (c.g.c). Suy ra ˆAHO=ˆAHB=90∘AHO^=AHB^=90∘, tức là OM⊥ABOM⊥AB
b) Để chứng minh OE là tia phân giác của góc O, ta cần chứng minh hai tam giác vuông COE và DOE bằng nhau. Hai tam giác này có cạnh huyền OE chung và OC = OD (giả thiết) nên chúng bằng nhau. Suy ra ˆEOC=ˆEODEOC^=EOD^ hay OE là tia phân giác của góc O.
O A C B D x y
a) Xét tam giác OAD và OBC có: OA = OB; góc BOC chung; OD = OC
=> tam giác OAD = OBC ( c - g - c)
=> góc OAD = OBC
Mà góc CAD = 180o - OAD; góc CBD = 180o - OBC
Nên góc CAD = góc CBD
giải
a) Ta có : A+B+C=180 độ ( tổng ba góc của 1 tam giác)
80+60+C=180
C=180-(80+60)
C=180-140
C=40
Vậy C=40
b)Ta có góc B=80-C2
C1=80-C2
=>B=C1
Xét tam giác AOB và tam giác DOC có
B=C2(C/M TRÊN)
AO=OD(GT)
góc AOB=góc COD(GT)
=>tam giác AOB=tam giác DOC(G.C.G)
Vậy tam giác AOB=tam giác DOC
c)Ta có AC//BD(quan hệ giữa vuông góc và song song)
Vậy AC//BD(đpdm)
Câu d) mình chưa nghĩ ra được mong thông cảm cho!
x O y A C B D
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )
a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)
⇒ˆAOD=ˆBOC
b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)
⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ
Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB
⇒ˆAOB+ˆCOD=180 độ
a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)
Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)
a) Ta có O C ⊥ O A nên A O C ^ = 90 ° ; O D ⊥ O B nên B O D ^ = 90 ° .
Tia OD nằm trong góc AOB nên A O D ^ + B O D ^ = A O B ^ .
⇒ A O D ^ = A O B ^ − B O D ^ = m ° − 90 ° (1)
Tia OC nằm trong góc AOB nên A O C ^ + B O C ^ = A O B ^
⇒ B O C ^ = A O B ^ − A O C ^ = m ° − 90 ° (2)
Từ (1) và (2), suy ra: A O D ^ = B O C ^ = m ° − 90 °
b) Tia OC nằm giữa hai tia OB và OD. Suy ra B O C ^ + D O C ^ = B O D ^ = 90 ° .
Nếu B O C ^ = D O C ^ thì D O C ^ = 90 ° : 2 = 45 ° .
Do đó A O D ^ = D O C ^ = C O D ^ ⇔ A O B ^ = 3. D O C ^ = 3.45 ° = 135 ° ⇔ m = 135 .
Chứng tỏ hai đường thẳng vuông góc