Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự zẽ hình nha
ta có\(\widehat{bOc}=\widehat{bOa}-\widehat{cOa}\)
=>\(\widehat{bOc}=120^0-100^0=20^0\)
b)\(tacó\hept{\begin{cases}\widehat{bOm}=\widehat{bOa}-\widehat{mOa}=120^0-110^0=10^0\\\widehat{mOc}=\widehat{mOa}-\widehat{cOa}=120^0-110^0=10^0\end{cases}}\)
=>\(\widehat{bOm}=\widehat{mOc}\left(1\right)\)
ta lại có \(\widehat{bOa}>\widehat{mOc}>\widehat{cOa}\)
=>\(mO\)nằm giữa 2 tia \(Ob\)zà \(Oc\left(2\right)\)
từ 1 zà 2 suy ra
mO là tia phân giác của góc \(bOc\)
Có góc xOt + góc yOt=180' (2 gocke bu)
130' + góc yOt =180'
goc yOt=180'-130'
gocyOt=50'
Có góc yOt+góc tOz=góc yOz(Ot nằm giữa Oz và Oy)
50'+goctOz=100'
góc tOz=100'-50'
góc tOz=50'
Ta có: \(\widehat{xOy}+\widehat{yOz}=150^o\)
Vì OA là phân giác \(\widehat{xOy}\)nên suy ra \(\widehat{xOA}=\widehat{AOy}=\frac{1}{2}\widehat{xOy}\)
Vì OB là tia phân giác \(\widehat{zOy}\)nên suy ra \(\widehat{yOB}=\widehat{BOy}=\frac{1}{2}\widehat{yOz}\)
Vậy suy ra: \(\widehat{AOB}=\widehat{AOy}+\widehat{yOB}=\frac{1}{2}\widehat{xOy}+\frac{1}{2}\widehat{yOz}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.150^o=75^o\)
bn tự vẽ hình nha
a) Trên 1 nửa mặt phẳng bờ chứa tia Ox ta có:
\(\widehat{xOy} = 70^O < \widehat{xOz} = 120^O\)
\(\Rightarrow\) Oy nằm giữa hai tia Ox và Oz
b) Ta có:
\(\widehat{xOm} = \frac{\widehat{xOy}}{2}\) (Om là tia phan giác của \(\widehat{xOy}\))
\(\Rightarrow\)\(\widehat{xOm} = \frac{70^O}{2}\)
\(\Rightarrow\)\(\widehat{xOm} = 35^O\)
\(\widehat{xOn} = \frac{\widehat{xOz}}{2}\) (On là tia phân giác của \(\widehat{xOz}\))
\(\Rightarrow\)\(\widehat{xOn} = \frac{120^O}{2}\)
\(\Rightarrow\) \(\widehat{xOn} = 60^O\)