K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Đáp án B.

Cho m=1 ta có

f ( n + 1 ) = f ( n ) + f ( 1 ) + n ⇔ f ( n + 1 ) = f ( n ) + n + 1.  

Khi đó 

f ( 2 ) + f ( 3 ) + ... + f ( k ) = f ( 1 ) + 2 + f ( 2 ) + 3 + ... + f ( k − 1 ) + k + 1

  ⇔ f ( 2 ) + f ( 3 ) + ... + f ( k − 1 ) + f ( k ) = f ( 1 ) + f ( 2 ) + ... + f ( k − 1 ) + ( 1 + 2 + ... + k )  

⇔ f ( k ) = f ( 1 ) + ( 1 + 2 + ... + k ) = 1 + k ( k + 1 ) 2 .

 

Vậy hàm cần tìm là 

f ( x ) = 1 + x ( x + 1 ) 2 ⇒ f ( 96 ) = 1 + 96.97 2 = 4657 f ( 69 ) = 1 + 69.70 2 = 2416

Vậy

  T = log 4657 − 2416 − 241 2 = log 1000 = 3.

28 tháng 2 2016

a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5

      Vậy x = 1 , x = -5

b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1 

                                                                          hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5

      Vậy x > 1 hoặc x < -5

c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí

                                                                          hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1

      Vậy -5 < x < 1

20 tháng 2 2016

Đa thứ f(x) có dạng : ax2+bx+c

Theo đề ta có: 25a+5b+c=25a-5b+c

<=>5b=-5b

=>b=0

Do đó f(x) phải có dạng ax2+c

Ta thấy ax2+c=a.(-x)2+c

=>f(x)=f(-x) với mọi x thuộc R

20 tháng 2 2016

bài này khó thật

20 tháng 2 2016

x phải khác 0 nhỉ tại đâu có số nào là -0

20 tháng 2 2016

-_- 

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

4 tháng 2 2016

=>x+1=2006

chỗ nào có 2006 thay vào rút gọn

4 tháng 2 2016

anh làm luôn ra đi

11 tháng 1 2017

Từ \(f\left(x\right)+f\left(\frac{1}{x}\right)=x^2\); lần lượt thay \(x=2\)\(x=\frac{1}{2}\) vào, ta có:

\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\Leftrightarrow3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\)

Giải hệ phương trình với 2 ẩn \(f\left(2\right)\)\(f\left(\frac{1}{2}\right)\)

Tìm được \(f\left(2\right)=\frac{-13}{32}\)

12 tháng 1 2017

Ta có \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\) (1)

Thay \(x\rightarrow\frac{1}{x}\) được \(f\left(\frac{1}{x}\right)+3f\left(x\right)=\frac{1}{x^2}\)

\(\Leftrightarrow3f\left(\frac{1}{x}\right)+9f\left(x\right)=\frac{3}{x^2}\) (2)

Lấy (2) trừ (1) theo vế : \(8f\left(x\right)=\frac{3}{x^2}-x^2\)

\(\Leftrightarrow f\left(x\right)=\frac{1}{8}\left(\frac{3}{x^2}-x^2\right)\)

Vậy f(2) = -13/32

21 tháng 3 2016

Ta có:

\(f\left(1\right).f\left(-1\right)=\left(a+b\right).\left(-a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(-a+b\right)=\left(a+b\right)^2\)

\(\Rightarrow-a+b=a+b\)

\(\Rightarrow a=-a\)

\(a\ne0\) thì làm sao có a thỏa mãn được?

21 tháng 3 2016

Trần Thùy Dung ko biết thì đừng có làm. 5 - 3a - 3b = 5. Bài này trong violympic.

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.