K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

M A B C 1

xét tam giác MCA và tam giác MAB có C1 = MAB ( 2 góc cùng chắn cung AB )

 góc M chung

=> tam giác MCA đồng dạng tam giác MAB (g-g )

=> MA= MB.MC 

Bài 1: 

a: Xét ΔABO và ΔACO có 

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)

hay AC là tiếp tuyến của (O)

b: Xét (O) có 

OI là một phần đường kính

CE là dây

OI⊥CE tại I

Do đó: I là trung điểm của CE

Xét ΔDCE có 

DI là đường cao

DI là đường trung tuyến

Do đó: ΔDCE cân tại D

Xét ΔOED và ΔOCD có

OE=OC

ED=CD

OD chung

Do đó: ΔOED=ΔOCD

Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)

hay DE là tiếp tuyến của (O)

30 tháng 10 2023

loading...  

24 tháng 2 2018

Đường tròn c: Đường tròn qua B_1 với tâm O Góc α: Góc giữa O, A, P Góc α: Góc giữa O, A, P Góc β: Góc giữa P, B, O Góc β: Góc giữa P, B, O Đoạn thẳng i: Đoạn thẳng [P, C] Đoạn thẳng k: Đoạn thẳng [B, P] Đoạn thẳng l: Đoạn thẳng [P, A] Đoạn thẳng m: Đoạn thẳng [B, C] Đoạn thẳng n: Đoạn thẳng [E, B] Đoạn thẳng p: Đoạn thẳng [O, B] Đoạn thẳng q: Đoạn thẳng [O, A] Đoạn thẳng r: Đoạn thẳng [D, A] Đoạn thẳng s: Đoạn thẳng [A, B] O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j

a) Do BC // AP nên \(\widehat{EPD}=\widehat{DCB}\)  (Hai góc so le trong)

mà \(\widehat{DCB}=\widehat{EBP}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BD)

nên \(\widehat{EPD}=\widehat{EPB}\)

Suy ra \(\Delta PED\sim\Delta BEP\left(g-g\right)\)

b) Ta thấy ngay \(\widehat{EAD}=\widehat{EBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)

Suy ra \(\Delta AED\sim\Delta BEA\left(g-g\right)\)

c) Do \(\Delta PED\sim\Delta BEP\Rightarrow\frac{PE}{BE}=\frac{ED}{PE}\Rightarrow PE^2=ED.EB\)

\(\Delta AED\sim\Delta BEA\Rightarrow\frac{AE}{BE}=\frac{ED}{AE}\Rightarrow AE^2=BE.ED\)

Vậy nên AE = EP