Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot6=3^2=9\)
=>OH=1,5(cm)
b: Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)
nên ΔOBI đều
ΔOBI đều
mà BH là đường cao
nên H là trung điểm của OI
Xét tứ giác OBIC có
H là trung điểm chung của OI và BC
nên OBIC là hình bình hành
Hình bình hành OBIC có OB=OC
nên OBIC là hình thoi
ΔOBA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BAO}+60^0=90^0\)
=>\(\widehat{BAO}=30^0\)
Xét ΔABC có AB=AC
nên ΔABC cân tại A
ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của \(\widehat{BAC}\)
=>\(\widehat{BAC}=2\cdot\widehat{BAH}=60^0\)
=>ΔBAC đều
c: Xét (O) có
DB,DM là tiếp tuyến
Do đó: DB=DM
Xét (O) có
EM,EC là tiếp tuyến
=>EM=EC
DE=DM+ME
mà DM=DB và CE=EM
nên DE=DB+EC
ΔOBA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=6^2-3^2=27\)
=>\(BA=3\sqrt{3}\left(cm\right)\)
\(C_{ADE}=AD+DE+AE\)
\(=AD+AE+DB+EC\)
=AB+AC
\(=3\sqrt{3}\cdot2=6\sqrt{3}\left(cm\right)\)