Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
Đường tròn (C) có tâm I (3 ; 3) và có bán kính
\(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {9 + 9 - 14} = 2\)
Điểm M(x;0) thuộc Ox.
Từ M kẻ hai tiếp tuyến tiếp xúc với (C) tại A và B. Ta có:
\(\widehat {AMB} = {60^ \circ } \Rightarrow \widehat {IMB} = {30^ \circ }\)
\(\Rightarrow IM = {R \over {\sin {{30}^ \circ }}} = 2R = 4\)
\(IM = 4 \Leftrightarrow \sqrt {{{\left( {x - 3} \right)}^2} + 9} = 4\)
\(\Leftrightarrow {x^2} - 6x + 2 = 0\)
\(\Leftrightarrow x = 3 \pm \sqrt 7\)
Vậy có hai điểm M thỏa mãn đề bài, chúng có tọa độ là :
\({M_1}\left( {3 + \sqrt 7 ;0} \right)\) và \({M_2}\left( {3 - \sqrt 7 ;0} \right)\)
a) \(y+1=0\) hay \(15x+8y-112=0\)
b) \(MN=\dfrac{30}{\sqrt{34}}\)
Bài 2:
Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)
Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm
Gọi tiếp tuyến d của đường tròn có dạng:
\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)
d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)
\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)
\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)
\(\Leftrightarrow97a^2-228ab-288b^2=0\)
Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết
Bài 1:
Gọi d' là đường thẳng qua A và vuông góc d
Phương trình d':
\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)
Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)
\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)
\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn:
\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)
T M P I 3
gọi T ;P là 2 tiếp điểm của 2 tiếp tuyến kẻ từ M đến đường tròn (C)
\(\Delta MTP\) cận tại M (t/c tt)\(\Rightarrow MO\) là tia phân giác ;đường cao ...
\(\Rightarrow\widehat{TMO}=\widehat{PMO}=60^0\left(gt\right)\)
\(\Delta TMO\) có \(\widehat{MTO}=90^0\left(tt\right)\)\(\Rightarrow\Delta TMO\) là tam giác nửa đều
\(\Rightarrow MO=2TO=2.3=6\)
vậy tập hợp những điểm M cách đều điểm I(1;2) 1 khoảng cố định=6 là đường tròn tâm I(1;2) và bán kính R=6.
PT duong tron (C') \(\left(x-1\right)^2+\left(y-2\right)^2=36\).
Đường tròn (C): x 2 + y 2 + 4 x + 2 y + 4 = 0 có tâm I(-2;-1) và bán kính R = 1.
Gọi 2 tiếp điểm là B và C.
Ta có: B A C ^ = 60 0 nên B A I ^ = I A C ^ = 1 2 B A C ^ = 30 0 ( tính chất 2 tiếp tuyến cắt nhau).
Vì sin B A I ^ = sin 30 0 = 1 2 ; lại có: sin B A I ^ = B I A I = R A I
Suy ra: R A I = 1 2 ⇔ A I = 2 R = 2 ( vì R = 1)
⇔ m + 2 2 + 3 − m 2 = 2 2 ⇒ 2 m 2 − 2 m + 9 = 0 (vô nghiệm).
Chọn D.