K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp(1)

Xét tứ giác OKAB có 

\(\widehat{OKA}+\widehat{OBA}=180^0\)

Do đó: OKAB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra A,B,O,K,C cùng nằm trên đường tròn

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

20 tháng 12 2018

a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).

c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)

30 tháng 9 2021

A B D E K O C d1 d2 H I G

a/

\(d_1;d_2\) là tiếp tuyến với đường tròn tại A và B \(\Rightarrow d_1\perp AB;d_2\perp AB\) => \(d_1\)//\(d_2\)

Xét tg vuông ABK có

\(\widehat{ACB}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AK^2=KC.KB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/ 

Ta có 

DA=DC (2 tiếp tuyến của 1 đường tròn cùng xuất phát từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) (1)

EC=EB (lý do như trên) => tg EBC cân tại E\(\Rightarrow\widehat{ECB}=\widehat{KBE}\) (2 góc ở đáy của tg cân) (*)

\(\widehat{KBE}=\widehat{AKB}\) (góc so le trong) (**)

\(\widehat{KCD}=\widehat{ECB}\) (Góc đối đỉnh) (***)

Từ (*) (**) và (***) \(\Rightarrow\widehat{AKB}=\widehat{KCD}\) => tg DCK cân tại D => DC=DK (2)

Từ (1) và (2) => DA=DK nên K là trung điểm của AK

c/ Gọi I là giao của CH với BD

Ta có 

\(CH\perp AB;d_1\perp AB\) => CH//\(d_1\)

\(\Rightarrow\frac{IC}{DK}=\frac{BC}{BK}=\frac{BH}{BA}=\frac{IH}{DA}\) (Talet trong tam giác)

Mà DK=DA => IC=IH => BD đi qua trung điểm I của CH

d/

30 tháng 9 2021

câu a ý số 2 bạn còn cách nào khác ko? Tại mk chx hc góc nội tiếp chắn nửa đường tròn

Bài 1: 

a: Xét ΔABO và ΔACO có 

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)

hay AC là tiếp tuyến của (O)

b: Xét (O) có 

OI là một phần đường kính

CE là dây

OI⊥CE tại I

Do đó: I là trung điểm của CE

Xét ΔDCE có 

DI là đường cao

DI là đường trung tuyến

Do đó: ΔDCE cân tại D

Xét ΔOED và ΔOCD có

OE=OC

ED=CD

OD chung

Do đó: ΔOED=ΔOCD

Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)

hay DE là tiếp tuyến của (O)

30 tháng 10 2023

loading...  

3 tháng 5 2021

Mình chưa vẽ hình nhưng mà câu c bạn có sai không? Tại vì bạn ghi thế thì có khác gì chứng minh AK=AD đâu. Bạn xem lại nhá 

4 tháng 5 2021

\(\frac{2}{AK}=\frac{1}{AD}+\frac{1}{AE}\) nhá

4 tháng 3 2020

A B C O D E H I F

a) Xét \(\Delta ABE\)và \(\Delta ABD\)có :

\(\widehat{BAE}=\widehat{BAD}\)\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\approx\Delta ADB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AD.AE=AB^2\)( 1 )

Xét \(\Delta ABO\)vuông tại B ( do AB là tiếp tuyến ), đường cao BH ( tự c/m ), ta có hệ thức lượng

\(AH.AO=AB^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(AD.AE=AH.AO=AB^2\)

b) \(AD.AE=AH.AO\Rightarrow\frac{AE}{AH}=\frac{AO}{AD}\)

Xét \(\Delta AEH\)và \(\Delta AOD\)có :

\(\frac{AE}{AH}=\frac{AO}{AD}\)\(\widehat{EAH}\)( chung )

\(\Rightarrow\Delta AEH\approx\Delta AOD\left(c.g.c\right)\)\(\Rightarrow\widehat{AHE}=\widehat{ADO}\)( 3 )

Mà \(\Delta ODE\)cân tại O ( do OE = OD ) \(\Rightarrow\widehat{OED}=\widehat{ODE}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra \(\widehat{AHE}=\widehat{OED}\)

c) đường thẳng qua B vuông góc với CD tại I 

Xét hai tam giác vuông BID và CBI có :

\(\widehat{IDB}=\widehat{CBI}\)\(\widehat{BID}=\widehat{BIC}=90^o\)

\(\Rightarrow\Delta BID\approx\Delta CIB\left(g.g\right)\) \(\Rightarrow\frac{ID}{IB}=\frac{IB}{IC}=\frac{DB}{BC}\)

\(\Rightarrow\frac{ID}{IB}.\frac{IB}{IC}=\frac{ID}{IC}=\frac{BD^2}{BC^2}\)

Mặt khác : \(\Delta DAC\)có : BI // AC

\(\Rightarrow\frac{FI}{AC}=\frac{DI}{DC}=\frac{DI}{DI+CI}=\frac{1}{1+\frac{CI}{DI}}=\frac{1}{1+\frac{BC^2}{BD^2}}=\frac{BD^2}{BD^2+BC^2}=\frac{BD^2}{4R^2}\)( R là bán kính )

\(\Rightarrow FI=\frac{BD^2.AC}{4R^2}\)( 5 )

Xét \(\Delta BCD\)và \(\Delta ACO\)có :

\(\widehat{BCD}=\widehat{OAC}\)\(\widehat{CBD}=\widehat{ACO}=90^o\)

\(\Rightarrow\Delta BCD\approx\Delta CAO\left(g.g\right)\)\(\Rightarrow\frac{BC}{AC}=\frac{BD}{OC}\Rightarrow BC=\frac{AC.BD}{R}\)( 6 )

Xét 2 tam giác vuông BIC và BCD có :

\(\widehat{BCD}\)( chung ) ; \(\widehat{BIC}=\widehat{CBD}=90^o\)

\(\Rightarrow\Delta BIC\approx\Delta DBC\)( g.g )

\(\Rightarrow\frac{IB}{BD}=\frac{BC}{CD}\Rightarrow IB=\frac{BC.BD}{2R}\)( 7 )

Từ ( 6 ) và ( 7 ) suy ra : \(IB=\frac{AC.BD^2}{2R^2}\)( 8 )

Từ ( 5 ) và ( 8 ) suy ra : \(IF=\frac{IB}{2}\Rightarrow\)F là trung điểm của IB

\(\Rightarrow HF\)là đường trung bình của \(\Delta BCI\)\(\Rightarrow HF//CD\)