Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: y=(2m+1)x-2
=>(2m+1)x-y-2=0
\(d\left(O;d\right)=\dfrac{\left|0\cdot\left(2m+1\right)+0\cdot\left(-1\right)-2\right|}{\sqrt{\left(2m+1\right)^2+1}}=\dfrac{2}{\sqrt{\left(2m+1\right)^2+1}}\)
Theo đề, ta có: \(\sqrt{\left(2m+1\right)^2+1}=\sqrt{2}\)
=>(2m+1)^2=1
=>m=0 hoặc m=-1
b: Tọa độ A là:
y=0 và x=2/(2m+1)
=>OA=2/|2m+1|
Tọa độ B là:
x=0 và y=-2
=>OB=2
Theo đề, ta có: 1/2*OA*OB=1/2
=>4/|2m+1|=1
=>2m+1=4 hoặc 2m+1=-4
=>m=-5/2 hoặc m=3/2
Cách khác câu 4 (dùng AM-GM và pp chọn điểm rơi)
Lấy $k>0$. Áp dụng BĐT AM-GM cho các số dương thì:
$kx+\frac{4}{x}\geq 4\sqrt{k}$
$k(1-x)+\frac{9}{1-x}\geq 6\sqrt{k}$
Cộng theo vế:
$k+y\geq 10\sqrt{k}\Leftrightarrow y_{\min}=10\sqrt{k}-k$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} kx=\frac{4}{x}\\ k(1-x)=\frac{9}{1-x}\end{matrix}\right.\Rightarrow \frac{4}{x^2}=\frac{9}{(1-x)^2}\)
Kết hợp $1> x>0$ ta giải PT ra được $x=\frac{2}{5}$ nên $a+b=2+5=7$
Câu 4:
$0< x< 1\Rightarrow x>0; 1-x>0$
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{4}{x}+\frac{9}{1-x}\right)(x+1-x)\geq (2+3)^2\)
\(\Leftrightarrow y\geq 25\). Vậy $y_{\min}=25$. Dấu "=" xác định tại \(\frac{2}{x}=\frac{3}{1-x}\Leftrightarrow x=\frac{2}{5}\)
$\Rightarrow a=2; b=5\Rightarrow a+b=7$
d ∩ O y = B ⇒ x B = 0 ⇒ y B = m − 1 ⇒ B 0 ; m − 1 ⇒ O B = m − 1 = m − 1 d ∩ O x = A ⇒ y A = 0 ⇒ m x A + m − 1 = 0 ⇔ x A = 1 − m m m ≠ 0
⇒ A 1 − m m ; 0 ⇒ O A = 1 − m m
Tam giác OAB vuông cân tại O
O A = O B ⇔ = 1 − m m ⇔ m − 1 = 1 − m m m − 1 = m − 1 m ⇔ m 2 = 1 m − 1 1 − 1 m = 0 | m – 1 |
⇔ m = ± 1 m − 1 2 m = 0 ⇔ m = ± 1
Đáp án cần chọn là: D
Đề cho sai, vì khi m = 1 thì ba điểm A, B, O trùng nhau, đáp án đúng là m = -1.