K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

Vì C thuộc đường trung trực của đoạn thẳng AB nên CA = CB (tính chất điểm thuộc đường trung trực của đoạn thẳng)

Mà CA = 10 cm

Do đó CB = 10 cm.

Chọn đáp án A

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

20 tháng 2 2019

a) Xét tam giác ABC và tam giác MNC ta có:

MC=AC ( gt)

BC=NC (gt)

góc NCM = góc BCA ( 2 góc đối đỉnh )

=> tam giác ABC = tam giác MNC ( c.g.c)

b) => góc BAC = góc NMC ( 2 góc tương ứng )

<=> góc NMC=90 độ ( góc BAC=90 độ )

<=> \(AM\perp MN\)

đpcm

c) Tạo hình: gọi D là giao điểm của CE và MN

Có tam giác ABC = tam giác MNC 

=> góc EBC= góc DNC ( 2 góc tương ứng )

Tự c/m: tam giác NDC = tam giác BEC ( g.c.g)

=> ND=BE         ( 2  cạnh tương ứng )

    tam giác AEC = tam giác MDC (  c.g.c )

=> MD=AE ( 2 cạnh tương ứng )

Lại có: AE=BE ( gt )

=> ND=MD 

=> D là trung điểm của MN

=> CE đi qua trung điểm MN 

                         đpcm

11 tháng 5 2020

C A B M D I N

Xét tg ACB và tg DCM có :

MCD^ = BCA^ ( đối đỉnh )

AC = DC ( gt )

BC = MC ( gt )

=> tg ACB = tg DMC ( c-g-c )

Từ trên ta có : CMD^ = CBA^ ( góc tương ứng )

Do 2 góc này bằng nhau và ở vị trí sole trong 

Nên MD // AB 

Xét tg CIB và tg CNM có :

ICB^ = NCM^ ( đối đỉnh )

CB = CM ( gt )

CBI^ = CMN^ (cmt)

=> tg CIB = tg CNM ( g-c-g )

=> IB = NM ( cạnh tương ứng ) (1)

Ta có : MN = AB ( cmt ) (2)

Mà do ND = MD - MN (3)

AI = AB - BI (4)

Từ 1 ; 2 ; 3 và 4 => ND = AI  

3 tháng 1 2018

a) Xét \(\Delta ABC\)\(\Delta MNC\), ta có:

BC=NC (gt)

\(\widehat{BAC}=\widehat{NCM}\) (đối đỉnh)

AC=CM (gt)

\(\Rightarrow\Delta ABC=\Delta MNC\) (c-g-c)

b) Vì \(\Delta ABC=\Delta MNC\) nên \(\widehat{BAC}=\widehat{CMN}=90^0\) ( 2 góc tương ứng)

hay \(AM\perp MN\)

c) Ta có: A,C,M thẳng hàng nên \(\widehat{ACE}+\widehat{ECM}=180^0\) (kề bù)

\(\widehat{ACE}=\widehat{OCM}\) ( đối đỉnh)

\(\Rightarrow\widehat{OCM}+\widehat{ECM}=180^0\)

\(\Rightarrow\) ba điểm E,C,O thẳng hàng

hay CE đi qua trung điểm của đoạn thẳng MN

3 tháng 1 2018

nek bn ơi cần phải chứng minh 3 điểm A , C , M thẳng hàng nữa chứ

12 tháng 1 2018

A I B C M N D

a) Xét \(\Delta ABC;\Delta DMC\) có :

\(BC=CM\left(gt\right)\)

\(\widehat{ACB}=\widehat{DCM}\) (đối đỉnh)

\(AC=CD\left(gt\right)\)

=> \(\Delta ABC=\Delta DMC\left(c.g.c\right)\)

b) Từ \(\Delta ABC=\Delta DMC\) (cmt - câu a)

=> \(\widehat{BAC}=\widehat{MDC}\) (2 góc tương ứng)

Mà : 2 góc này ở vị trí so le trong

=> \(\text{MD // AB}\left(đpcm\right)\)

c) Xét \(\Delta BIC;\Delta MNC\) có :

\(\widehat{BCI}=\widehat{MCN}\) (đối đỉnh)

\(BC=CM\left(gt\right)\)

\(\widehat{CBI}=\widehat{NMC}\left(slt\right)\)

=> \(\Delta BIC=\Delta MNC\left(g.c.g\right)\)

=> \(BI=NM\) (2 góc tương ứng)

Xét \(\Delta AIC;\Delta DNC\) có :

\(AC=CD\left(gt\right)\)

\(\widehat{ACI}=\widehat{DCN}\left(slt\right)\)

\(IC=CN\left(\Delta BIC=\Delta MNC-cmt\right)\)

=> \(\Delta AIC=\Delta DNC\left(c.g.c\right)\)

=> \(IA=ND\) (2 cạnh tương ứng)

25 tháng 11 2019


ABCI

a) Xét tam giác ABC và tam giác DMC có :

BC = CM ( GT )

Góc ACB = góc MCD ( 2 góc đối đỉnh (

AC = CD ( GT )

=> tam giác ABC = tam giác DMC ( c - g - c )

b) Theo ý a , ta có : tam giác ABC = tam giác DMC

=> Góc BAD = góc ADM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong

=> MD // AB ( dấu hiệu )

c) Nghĩ nốt đã

6 tháng 3 2020

O A D x C I z B E y

Xét tam giác AOC và tam giác BOC

có OC chung

góc BOC= góc AOC (GT)

góc CBO = góc CAO = 900

suy ra tam giác AOC = tam giác BOC ( cạnh huyền- góc nhọn)

suy ra AC=BC ( hai cạnh tương ứng)

b) Xét tam giác BCE và tam giác ACD

có góc EBC = góc DAC = 900

AC=BC ( CMT)

góc BCE = góc ACD ( đối đỉnh)

suy ra am giác BCE =tam giác ACD (g.c.g)

suy ra CE=CD (hai cạnh tương ứng)

suy ra tam giác ECD cân tại C

c) 

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đo: ΔMBC=ΔNCB

Suy ra: CM=BN và \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

b: Gọi IE,IK lần lượt là khoảng cách từ I đến AB và AC

=>IE vuông góc với AB, IK vuông góc với AC

Xét ΔAEI vuông tại E và ΔAKI vuông tại K có

AI chung

\(\widehat{EAI}=\widehat{KAI}\)

Do đó: ΔAEI=ΔAKI

Suy ra: IE=IK

c: Ta có: AB=AC

IB=IC

Do đó: AI là đường trung trực của BC(1)

d: Xét ΔABK vuông tại B và ΔACK vuông tại C có

AK chung

AB=AC

Do đó: ΔABK=ΔACK

Suy ra: BK=CK

=>K nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,I,K thẳng hàng

Bài 2: 

a: AC=(20+10):2=15(cm)

CB=20-15=5(cm)

b: Vì C là trung điểm của BM

nên \(BM=2\cdot BC=10\left(cm\right)\)

c: Trên tia BA, ta có: BM<BA

nên điểm M nằm giữa hai điểm B và A

mà BM=1/2BA

nên M là trung điểm của AB