Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\widehat{M}\) là trung điểm của \(\widehat{BC}\) nên:
\(\widehat{BM}=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Delta ABC\) cân tại \(A\), lại có \(\widehat{AM}\) là đường phân giác nên \(\widehat{AM}\) cũng là đường cao. Do đó \(\Delta AMB\) vuông tại \(\widehat{M}\)
\(\Rightarrow AM^2=AB^2-BM^2\) ( theo định lí Pytago )
\(\Rightarrow\widehat{AM}=4cm\)
\(S_{ABC}=\dfrac{AM.BC}{2}=\dfrac{4.6}{2}=12\left(cm^2\right)\)
b) \(\Delta AMC\) vuông tại\(M\) có \(\widehat{MO}\) là đường trung tuyến nên \(\widehat{OM}=\widehat{OA}\)
\(\Rightarrow\text{∠}OAM=\text{∠}OMA\)( \(\Delta AMO\) cân tại \(O\))
Lại có \(\text{∠}OAM=\text{∠}MAB\) ( \(AM\) là tia phân giác của \(BAC\) )
\(\Rightarrow\text{∠}OMA=\text{∠}MAB\)
Mà đây là 2 góc ở vị trí so le trong
\(\Rightarrow OM\text{ // }AB\)
Vậy tứ giác \(ABMO\) là hình thang.
c) Tứ giác \(AMCK\) có \(\widehat{OA}=\widehat{OC};\widehat{OM}=\widehat{OK}\) nên tứ giác \(AMCK\) là hình bình hành . Lại có \(\text{∠}AMC=90^o\)(chứng minh trên) nên tứ giác \(ACMK\) là hình chữ nhật
Hình chữ nhật \(ACMK\) là hình vuông
\(\Leftrightarrow\widehat{AM}=\widehat{MC}=\widehat{BM}\)
\(\Leftrightarrow\widehat{AM}=\dfrac{BC}{2}\)
\(\Leftrightarrow\Delta ABC\) vuông tại \(\widehat{A}\)
TK
a) Vì M là trung điểm của BC nên:
BM = BC/2 = 6/2 = 3(cm)
Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.
Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)
= 52 - 32 = 16(cm)
Suy ra AM = 4cm
b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.
Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)
Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)
Suy ra ∠OMA = ∠MAB
Mà đây là 2 góc ở vị trí so le trong
Suy ra OM // AB
Vậy tứ giác ABMO là hình thang.
c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.
Hình chữ nhật AMCK là hình vuông
⇔ AM = MC = BM
⇔ AM = BC/2
⇔ ΔABC vuông cân tại A.
a: BC=6cm
nên BM=CM=3cm
=>AM=4cm
\(S_{ABC}=\dfrac{3\cdot4}{2}=6\left(cm^2\right)\)
b: Xét tứ giác AMCK có
O là trung điểm của AC
O là trung điểm của MK
Do đó;AMCK là hình bình hành
Suy ra: AK//MC
c: Hình bình hành AMCK có \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)
a) Tứ giác AEDF có: góc BAC=90\(^o\)
góc DFA=90\(^o\)
góc DEF=90\(^o\)
=> Tứ giác AEDF là hình chữ nhật
b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)
=> Δ ABD cân tại D
mà DE là đường cao( do AB là đường trung trực của DM)
=> DE là đường trung tuyến
=> EA=1/2AB=> EA=3 (cm)
CM tương tự đối với Δ ADC
từ đó suy ra: FA=1/2AC=> FA=4 (cm)
\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)
c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)
E là trung điểm của đường chéo DM
=> ADBM là hình bình hành
mà MD vuông góc với AB
=> ADBM là hình thoi
d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi
Ta có: MA=AD( 2 cạnh của hình thoi)
NA = AD( 2 cạnh của hình thoi)
=> MA=NA
mà MA=BD
=> NA=BD
Ta có: NA//DC( cạnh đối của hình thoi)
=> NA//BD( vì BD và DC trùng nhau)
tứ giác BAND có: NA=BD
NA//BD
=> BADN là hình bình hành
=> AB=DN
Để ADCN là hình vương
<=> DN=AC
<=> AB=AC( AB=DN)
<=> Δ ABC cân tại A
mà Δ ABC vuông
=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A
HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCK là hình chữ nhật
b: BM=CM=BC/2=3cm
\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)
S=1/2*AM*BC=1/2*6*4=3*4=12cm2
c: Để AMCK là hình vuông thì AM=CM=BC/2
=>ΔABC vuông tại A
a) Vì M là trung điểm của BC nên:
BM = BC/2 = 6/2 = 3(cm)
Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.
Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)
= 52 - 32 = 16(cm)
Suy ra AM = 4cm
b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.
Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)
Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)
Suy ra ∠OMA = ∠MAB
Mà đây là 2 góc ở vị trí so le trong
Suy ra OM // AB
Vậy tứ giác ABMO là hình thang.
c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.
Hình chữ nhật AMCK là hình vuông
⇔ AM = MC = BM
⇔ AM = BC/2
⇔ ΔABC vuông cân tại A.