K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Do x+ y= 1 nên

S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y ,   d o   x + y = 1 = 16 x 2 y 2 - 2 x y + 12

Đặt t= xy . Do x≥ 0 ; y≥0  nên

  0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4

Xét hàm số f(t) = 16t2- 2t + 12  trên [0 ; 1/4].

Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16  .

Bảng biến thiên

Từ bảng biến thiên ta có:

m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ;         m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2

 

Vậy giá trị lớn nhất của S là 25/2 đạt được khi 

x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2

giá trị nhỏ nhất của S  là 191/ 16 đạt được khi

Chọn A.

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\) Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi...
Đọc tiếp

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là

A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\)

Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi đó giá trị a + 2b bằng

A. \(\frac{3}{2}\) B. \(\frac{4}{3}\) C. 1 D. \(\frac{2}{3}\)

Câu 3 : Có bao nhiêu giá trị nguyên dương của m để khoảng cách từ gốc tọa độ O đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y = \(x^3-3x+m\) nhỏ hơn hoặc bằng \(\sqrt{5}\)

A. 5 B. 2 C. 11 D. 4

Câu 4 : Gọi m là giá trị nhỏ nhất của hàm số y = \(x-1+\frac{4}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) . Tìm m ?

A. m = 2 B. m = 5 C. m = 3 D. m = 4

Câu 5 : giá trị lớn nhất của hàm số \(y=\sqrt{-x^2+4x}\) trên khoảng (0;3) là :

A. 4 B. 2 C. 0 D. -2

Câu 6 : giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\sqrt{x-2}+\sqrt{4-x}\) lần lượt là M và m . Chọn câu trả lời đúng

A. M = 4 , m = 2 B. M = 2 , m = 0 C. M = 3 , m = 2 D. M = 2 , m = \(\sqrt{2}\)

4
NV
16 tháng 10 2020

1.

Hàm trùng phương có đúng 1 cực trị khi:

TH1: \(a=m=0\)

TH2: \(ab=-m>0\Leftrightarrow m< 0\)

\(\Rightarrow m\le0\)

Đáp án B

NV
16 tháng 10 2020

2.

\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)

Hàm số có 2 cực trị nằm về 2 phía trục hoành

\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)

\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)

\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)

NV
3 tháng 4 2020

1/ \(f'\left(x\right)=\frac{3\sqrt{x^2+1}-\frac{x\left(3x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\frac{3\left(x^2+1\right)-3x^2-x}{\left(x^2+1\right)\sqrt{x^2+1}}=\frac{3-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)

Hàm số đồng biến trên \(\left(-\infty;3\right)\) nghịch biến trên \(\left(3;+\infty\right)\)

\(\Rightarrow f\left(x\right)\) đạt GTLN tại \(x=3\)

\(f\left(x\right)_{max}=f\left(3\right)=\frac{10}{\sqrt{10}}=\sqrt{10}\)

2/ \(y'=\frac{\sqrt{x^2+2}-\frac{\left(x-1\right)x}{\sqrt{x^2+2}}}{x^2+2}=\frac{x^2+2-x^2+x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{x+2}{\left(x^2+2\right)\sqrt{x^2+2}}\)

\(f'\left(x\right)=0\Rightarrow x=-2\in\left[-3;0\right]\)

\(y\left(-3\right)=-\frac{4\sqrt{11}}{11}\) ; \(y\left(-2\right)=-\frac{\sqrt{6}}{2}\) ; \(y\left(0\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}M=-\frac{\sqrt{2}}{2}\\N=-\frac{\sqrt{6}}{2}\end{matrix}\right.\) \(\Rightarrow MN=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}\)

Tất cả các đáp án đều sai

3/ \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\\\sqrt{x+1}>0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\) \(\forall x\Rightarrow N=0\) khi \(x=3\)

- Với \(0\le x< 3\Rightarrow f\left(x\right)=\left(3-x\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=-\sqrt{x+1}+\frac{\left(3-x\right)}{2\sqrt{x+1}}=\frac{-2\left(x+1\right)+3-x}{2\sqrt{x+1}}=\frac{-3x+1}{2\sqrt{x+1}}\)

\(f'\left(x\right)=0\Rightarrow x=\frac{1}{3}\)

- Với \(3< x\le4\Rightarrow f\left(x\right)=\left(x-3\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=\sqrt{x+1}+\frac{x-3}{2\sqrt{x+1}}=\frac{2\left(x+1\right)+x-3}{2\sqrt{x+1}}=\frac{3x-1}{2\sqrt{x+1}}>0\) \(\forall x>3\)

Ta có: \(f\left(0\right)=3\) ; \(f\left(\frac{1}{3}\right)=\frac{16\sqrt{3}}{9}\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow M=\frac{16\sqrt{3}}{9}\Rightarrow M+2N=\frac{16\sqrt{3}}{9}\)

3 tháng 4 2020

Câu 2 hình như câu B mà người ta nói đạt GTLN . GTNN tại M , N nên là 0 x -2 =0

NV
3 tháng 6 2019

Câu 1:

Lấy logarit cơ số tự nhiên 2 vế:

\(x.lny+e^y.x\ge y.lnx+y.e^x\)

\(\Leftrightarrow\frac{lny+e^y}{y}\ge\frac{lnx+e^x}{x}\)

Xét hàm \(f\left(t\right)=\frac{lnt+e^t}{t}\) với \(t>1\)

\(f'\left(t\right)=\frac{\left(e^t+\frac{1}{t}\right).t-lnt-e^t}{t^2}=\frac{t.e^t+1-e^t-lnt}{t^2}\)

Xét \(g\left(t\right)=t.e^t+1-e^t-lnt\Rightarrow g'\left(t\right)=e^t+t.e^t-e^t-\frac{1}{t}\)

\(g'\left(t\right)=t.e^t-\frac{1}{t}=\frac{t^2.e^t-1}{t}>0\) \(\forall t>1\)

\(\Rightarrow g\left(t\right)\) đồng biến \(\Rightarrow g\left(t\right)>g\left(1\right)=1>0\) \(\forall t>1\)

\(\Rightarrow f'\left(t\right)=\frac{g\left(t\right)}{t^2}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)\ge f\left(t_2\right)\Leftrightarrow t_1\ge t_2\)

\(\Rightarrow f\left(y\right)\ge f\left(x\right)\Leftrightarrow y\ge x\) \(\Rightarrow log_xy\ge1>0\)

\(P=log_x\left(xy\right)^{\frac{1}{2}}+log_yx=\frac{1}{2}\left(1+log_xy\right)+\frac{1}{log_xy}\)

\(P=\frac{1}{2}+\frac{1}{2}log_xy+\frac{1}{log_xy}\ge\frac{1}{2}+2\sqrt{\frac{log_xy}{2log_xy}}=\frac{1}{2}+\sqrt{2}\)

NV
3 tháng 6 2019

\(f'\left(x\right)=\frac{1}{x-1}\Rightarrow\int f'\left(x\right)dx=\int\frac{1}{x-1}dx\)

\(\Rightarrow f\left(x\right)=ln\left|x-1\right|+C\)

\(\Rightarrow f\left(x\right)=\left\{{}\begin{matrix}ln\left|x-1\right|+C_1\left(x>1\right)\\ln\left|x-1\right|+C_2\left(x< 1\right)\end{matrix}\right.\)

\(f\left(0\right)=2018\Leftrightarrow2018=ln\left|0-1\right|+C_2\Rightarrow C_2=2018\)

\(f\left(2\right)=2019\Rightarrow2019=ln\left|2-1\right|+C_1\Rightarrow C_1=2019\)

\(\Rightarrow f\left(x\right)=\left\{{}\begin{matrix}ln\left|x-1\right|+2019\left(x>1\right)\\ln\left|x-1\right|+2018\left(x< 1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=2019+ln2\\f\left(-1\right)=2018+ln2\end{matrix}\right.\) \(\Rightarrow S=1\)

NV
17 tháng 8 2020

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

\(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\Rightarrow1\le y\le\frac{7}{3}\)

\(y^2+\left(x-4\right)y+x^2-3x+4=0\)

\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\ge0\)

\(\Leftrightarrow-3x^2+4x\ge0\Rightarrow0\le x\le\frac{4}{3}\)

Mặt khác ta có:

\(P=3x^3-3y^3+20x^2+5y^2+39x+2\left(-x^2-y^2+4y+3x-4\right)\)

\(P=\left(3x^3+18x^2+45x\right)+\left(-3y^3+3y^2+8y-8\right)=f\left(x\right)+f\left(y\right)\)

Xét hàm \(f\left(x\right)=3x^3+18x^2+45x\) trên \(\left[0;\frac{4}{3}\right]\)

\(f'\left(x\right)=9x^2+36x+45>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)

Xét \(f\left(y\right)=-3y^3+3y^2+8y-8\) trên \(\left[1;\frac{7}{3}\right]\)

\(f'\left(y\right)=-9y^2+6y+8=0\Rightarrow y=\frac{4}{3}\)

\(f\left(1\right)=0\) ; \(f\left(\frac{4}{3}\right)=\frac{8}{9}\) ; \(f\left(\frac{7}{3}\right)=-\frac{100}{9}\)

\(\Rightarrow f\left(y\right)_{max}=f\left(\frac{4}{3}\right)=\frac{8}{9}\Rightarrow f\left(y\right)\le\frac{8}{9}\)

\(\Rightarrow P\le\frac{892}{9}+\frac{8}{9}=100\)

lưa ý pt \(x^2=m^2-m+1\)có nghiệm với x phải #0 vì nếu = 0 thì trùng => sai

nhưng nghiệm \(\left(+,-\right)\sqrt{m^2-m+1}\)luôn #0 rồi khỏi lo

\(y'=6x^2-6\left(m+1\right)x+6m\)

ta có y/y'=\(\left(3m-1\right)x+m^3+m^2+m\)

suy ra y= \(\left(3m-1\right)x+m^3+m^2+m\)là pt của dường thẳng đi qua A và B

de-ta \(=9\left(m+1\right)^2-36m\)

y' có 2 \(n_o\)phân biệt khi m#1

hai hoành độ của hai điểm cực trị là :

\(X=\dfrac{-b\left(+,-\right)\sqrt{deta}}{a}=\)

\(\left[{}\begin{matrix}\dfrac{m+3}{2}\\\dfrac{3m-1}{2}\end{matrix}\right.\)<=>y=\(\left[{}\begin{matrix}2m^3+5m^2+10m+3\\2m^3+11m^2+4m+1\end{matrix}\right.\)(tìm y bằng cách thế x vào pt đường thẳng )

khoảng cách giữa hai điểm AB =\(\sqrt{2}\)

ta có pt : \(2=\left(\dfrac{m+3}{2}-\dfrac{3m-1}{2}\right)^2+\left(2m^3+5m^2+10m-3-\left(2m^3+11m^2-4m+1\right)\right)^2\)

lại sai chỗ nào rồi 0 ra nghiệm , cậu tính lại thử , cách giả là như vậy

13 tháng 8 2020

kết quả cuối cùng là bn vậy bạn

NV
13 tháng 8 2020

5.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)

\(\Rightarrow M=-2\)

NV
15 tháng 8 2020

\(\left(x+y\right)xy=x^2+y^2-xy\)

\(\Leftrightarrow\left(x+y\right)xy=\left(x+y\right)^2-3xy\)

Đặt \(x+y=t\Rightarrow xy=\frac{t^2}{t+3}\)

Lại có \(\left(x+y\right)^2\ge4xy\Rightarrow t^2\ge\frac{4t^2}{t+3}\)

\(\Leftrightarrow t^2\left(\frac{t-1}{t+3}\right)\ge0\Rightarrow\left[{}\begin{matrix}t\ge1\\t< -3\end{matrix}\right.\)

\(A=\frac{x^3+y^3}{\left(xy\right)^3}=\frac{\left(x+y\right)\left(x^2+y^2-xy\right)}{\left(xy\right)^3}=\frac{\left(x+y\right)\left(x+y\right)xy}{\left(xy\right)^3}=\left(\frac{x+y}{xy}\right)^2\)

\(A=\left(\frac{t\left(t+3\right)}{t^2}\right)^2=\left(\frac{t+3}{t}\right)^2=\left(1+\frac{3}{t}\right)^2\)

\(\Rightarrow y'=-\frac{6\left(t+3\right)}{t^3}< 0\) \(\forall t\ge1;t< -3\)

\(\lim\limits_{x\rightarrow-\infty}\left(1+\frac{3}{t}\right)^2=1\Rightarrow A_{max}=A\left(1\right)=16\)

\(\Rightarrow M=16\) khi \(x=y=\frac{1}{2}\)