Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3) Tất cả các anken đều có thể cộng H2 thành ankan
(5) Tất cả các ankan đều nhẹ hơn nước
ĐÁP ÁN C
2. Phản ứng đặc trưng của anken là phản ứng cộng
5. Công thức phân tử chung của các ankađien là CnH2n-2 ( )
6. Buta-1,3-đien và isopren là các ankađien liên hợp
ĐẤP ÁN C
Áp dụng ĐLBTKL:
mhh = mX + mY + mCO3 = 10 g; mA = mX + mY + mCl = 10 - mCO3 + mCl.
số mol CO3 = số mol CO2 = 0,03 mol.
Số mol Cl = 2 (số mol Cl2 = số mol CO3) (vì muối X2CO3 tạo ra XCl2, Y2CO3 tạo ra 2YCl3).
Do đó: mA = 10 - 60.0,03 + 71.0,03 = 10,33g.
Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:
Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.
E làm thế này đúng không ạ?
n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)
Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)
Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)
phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
Gọi CT của A là CxHyO2.
CxHyO2 + (x+y/4 - 1)O2 ---> xCO2 + y/2H2O
Trong 3,7 gam khí A, có số mol = 1,6/32 = 0,05 mol. Do đó phân tử khối của A = 3,7/0,05 = 74. Do đó: 12x + y = 74 - 32 = 42.
Mặt khác số mol của CO2 = 6,6/44 = 0,15 mol; số mol H2O = 2,7/18 = 0,15 mol = số mol CO2. Dựa vào pt phản ứng ta có: y = 2x.
Giải hệ 2 pt trên thu được x = 3; y = 6. CT của A: C3H6O2.
Số mol A = 1/3 số mol CO2 = 0,05 mol. Suy ra m = 74.0,05 = 3,7 g.
a) Ta có: \(\Delta\)Px =m.\(\Delta\)vx = 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)
AD nguyên lý bất định Heisenberg: \(\Delta\)x.\(\Delta\)Px\(\ge\)\(\frac{h}{2.\Pi}\) với \(\frac{h}{2.\Pi}\)= 1,054.10-34
Suy ra: \(\Delta\)x \(\ge\)\(\frac{1,054.10^{-34}}{1,82.10^{-24}}\)= 5,79.10-11 m
b) \(\Delta\)P \(\ge\)\(\frac{1,054.10^{-34}}{10^{-5}}\)= 1,054.10-29 (kg.m/s)
Suy ra:\(\Delta\)vx = 1,054.10-27 (m/s)
AD nguyên lý bất định Heisenberg: Δx.ΔPx ≥ h/(4.Π) với h=6,625.10-34
a)Ta có: ΔPx =m.Δvx = 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)
=> Δx ≥ 6,625.10-34/(4.Π.1,82.10-24)= 2,8967.10-11 (m)
b) ΔPx = m. Δvx ≥ h/(4.Π.Δx )
=> m. Δvx ≥ 6,625.10-34/(4.Π.10-5) = 5,272.10-30
=> Δvx ≥ 5,272.10-30/0,01 = 5,272.10-28 (m/s)
Ta có hệ thức De_Broglie: λ= h/m.chmc
Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv
a) Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s
→ λ= 6,625.10−3410−3.10−2=6,625.10-29 (m)
b) Ta có m=1g=10-3kg và v =100 km/s=105 m
→ λ= 6,625.10−3410−3.105= 6,625.10-36 (m)
c) Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg và v= 1000m/s
→ λ= 6,625.10−344,03.1000=9.97.10-11 (m)
a) áp dụng công thức
\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)
b)
\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)
c)
\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)
Các trường hợp thỏa mãn 3-5
ĐÁP ÁN C