K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

đe nhu sit a

de sai a

13 tháng 5 2021

a đúng,b và c sai

tk mik nha

28 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Xét tam giác BDA và tam giác KDC có:       Góc BDA= Góc KDC(đối đỉnh)

                                                                         Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

=>\(\frac{DB}{DA}=\frac{DK}{DC}\)

b, Xét tam giác DBK và tam giác DAC có:      Góc BDK= Góc DAC(đối đỉnh)

                                                                        \(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:

BC2=AC2-AB2

BC2=52-32

BC2=16

BC=4(cm)

Vì AD là phân giác 

=>\(\frac{AB}{AC}=\frac{BD}{CD}\)

=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)

=>\(\frac{3}{5+3}=\frac{BD}{BC}\)

=>\(\frac{3}{8}=\frac{BD}{4}\)

=>BD=1,5(cm)

=>CD=BC-BD

     CD=4-1,5

     CD=2,5(cm)

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDCb/ Chứng minh rằng BI.BA=BM.BCc/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm Md/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)Mình đã lm đc câu a vs câu c ntn:a/...
Đọc tiếp

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.

a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDC

b/ Chứng minh rằng BI.BA=BM.BC

c/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm M

d/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)

Mình đã lm đc câu a vs câu c ntn:

a/ Vì \(Mx\perp BC\)tại M (gt)

\(\Rightarrow\) \(DM\perp BC\)tại M ( \(D\in Mx\) )

\(\Rightarrow\) \(\widehat{DMC}=90^o\) ( tính chất )

\(\Rightarrow\) Tam giác MDC vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MDC vuông tại M có:

\(\widehat{C}\)chung

Vậy tam giác ABC ~ tam giác MDC ( 1 góc nhọn )

 

b/ Vì \(\widehat{DMC}=90^o\) ( chứng minh trong câu a )

\(\Rightarrow\)\(\widehat{DMB}=90^o\) ( 2 góc kề bù )

hay \(\widehat{IMB}=90^o\) ( \(I\in MD\))

\(\Rightarrow\)Tam giác MBI vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MBI vuông tại M có:

\(\Rightarrow\widehat{ABC}\left(\widehat{MBI}\right)\)chuing

Vậy tam giác ABC ~ tam giác MBI ( góc nhọn )

\(\Rightarrow\frac{BA}{BM}=\frac{BC}{BI}\)( 2 cặp cạnh tương ứng )

\(\Leftrightarrow BI.BA=BM.BC\)

 

Đó là những gì mình lm đc nên các bn giúp mk câu c vs d nhé !!!

0
15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ

 

25 tháng 7 2018

Kết luận trên đúng vì 2 tam giác đó sẽ đồng dạng với nhau theo trường hợp c.g.c hoặc ch-cgv.

Chúc bạn học tốt.