K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Xét hình thoi ABCD có hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường

Suy ra AO ⊥ BO ⇒ Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án = 90°

Ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án = 90° không đổi mà cố định

⇒ Quỹ tích điểm O là nửa đường tròn đường kính AB trừ hai điểm A và B

2 tháng 6 2017

Chọn phương án (D) :

Quỹ tích các điểm M nhìn đoạn thẳng AB dưới 1 góc \(120^0\) là hai cung chứa góc \(120^0\) (đối xứng nhau) dựng trên hai điểm A, B.

11 tháng 6 2017

Chọn (D) hai cung chứa góc 120° (đối xứng nhau) dựng trên hai điểm A, B).

14 tháng 2 2020

A B C D E M J O I

a) Ta có : 

\(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)

\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)

Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\) hay \(CD\perp DE\)

\(\Rightarrow DE//AB\)nên tứ giác ABED là hình thang cân

\(\Rightarrow AD=BE\)

Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)không đổi

b ) \(IB=IC=IM\)nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)

Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\)

Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\)( không đổi vì O,M cố định )

Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi.

Chúc bạn học tốt !!!

3 tháng 5 2018

a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)

Lại có: \(CH\perp AB\)tại H (gt)  mà E \(\in CH\)(do  E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\) 

Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm

b.

Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C

=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)

=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)\(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)

Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)

c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)

Nối K với M 

Xét \(\Delta KOM\)và \(\Delta OCH\)có:

+ KO = OC = R

\(\widehat{KOM}=\widehat{HCO}\)(cmt)

+ OM = CH (gt) 

=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)