Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=[3;5)\) ; \(B=\left(-\infty;4\right)\cup\left(7;+\infty\right)\)
\(\Rightarrow A\cup B=\left(-\infty;5\right)\cup\left(7;+\infty\right)\)
\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)
Ơ không biết bạn có gõ nhầm đáp án A không nhỉ :v
\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)
1. a) D = [1;4] \{2;3}
b) D = (0;+∞)
2.
\(2\overrightarrow{a}\)= (2;4) và \(3\overrightarrow{b}\) = (9;12)
⇒ \(2\overrightarrow{a}\) + \(3\overrightarrow{b}\) = (2+9; 4+12)
⇔ (11; 16)
Vậy \(\overrightarrow{m}\) = (11;16)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
Lời giải:
Ta viết lại tập hợp A,B:
\(A=\left \{ x\in\mathbb{R}|x\leq 3\text{hoặc}x>6 \right \}\)
\(B=\left \{ x\in\mathbb{R}|-5\leq x\leq 5\right \}\)
a)
\(\bullet A\setminus B=\left \{ x\in\mathbb{R}|x<-5 \text{hoặc} x>6\right \}\)
Khoảng \((-\infty;-5)\) và \((6;+\infty)\)
\(\bullet B\setminus A=\left\{x\in\mathbb{R}|3< x\leq 5\right\}\)
Nửa khoảng \((3;-5]\)
\(\bullet A\cup B=\left \{ x\in\mathbb{R}|x\leq 3, x>6 \text{hoặc}5\geq x>3 \right \}\)
\(\Rightarrow R\setminus (A\cup B)=\left \{ x\in\mathbb{R}|5< x < 6 \right \}\)
Khoảng \((5;6)\)
\(\bullet A\cap B=\left \{ x\in\mathbb{R}|-5\leq x\leq 3 \right \}\)
\(\Rightarrow R\setminus(A\cap B)=\left \{ x\in\mathbb{R}|x>3 \text{hoặc}x<-5 \right \}\)
Khoảng: \((3,+\infty); (-\infty;-5)\)
\(\bullet A\setminus B =\left \{ x\in\mathbb{R}|x> 6\text{hoặc}x< -5\right \}\)
\(\Rightarrow R\setminus( A\setminus B)=\left\{x\in\mathbb{R}| -5\leq x\leq 6\right\}\)
Đoạn \([-5;6]\)
b)
Vẽ trục số biểu diễn các tập hợp ra.
Khi đó:
Độ dài \(C\cap B\) là \(a-(-5)=7\Rightarrow a=2\)
Độ dài \(D\cap B\) là: \(5-b=9\Rightarrow b=-4\)
\(\Rightarrow C\cap D=\left\{x\in\mathbb{R}| -4\leq x\leq 2\right\}\)
Nửa khoảng: \((-\infty,3];(6;+\infty)\)
3.
\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)
\(\Leftrightarrow-3< x< 7\)
\(\Rightarrow C=\left(-3;7\right)\)
\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)
\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)
\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)
4.
Hình như cái đề chẳng liên quan gì đến đáp án hết :)
1.
\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)
2.
\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)
Rất tiếc tập này không thể liệt kê được (có vô số phần tử)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh
Đáp án D