Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3t^2 -t+ 6t -2 - 3t^2 - 3t -2t + 7
= (3t^2 -3t^2) +( 6t-t-3t-2t) +(7-2)
= 0+0+5 =5
Vậy A ko phụ thuộc vào giá trị của biến.
Những bài kiểu này bạn cứ nhân ra mà nếu kết quả ra 1 số thực thi ko phụ thuộc vào biến.
Chúc bạn học tốt.
P\(=\frac{\left(x+6\right)^2+\left(x-6\right)^2}{x^2+36}=\frac{\left(x^2+12x+36\right)+\left(x^2-12x+36\right)}{x^2+36}\)
=\(\frac{x^2+12x+36+x^2-12x+36}{x^2+36}=\frac{2x^2+72}{x^2+36}=\frac{2\left(x^2+36\right)}{x^2+36}=2\)
Vì P=2 nên giá trị của P không phụ thuộc vào giá trị của x
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
b)
A=5-8x-x2
=-x2-8x+5
=-(x2+8x-5)
=-[(x2+8x+16)-5-16]
=-[(x+4)2-21]
=-(x+4)2+21
do -(x+4)2≤0 ∀ x
=>-(x+4)2+21 ≤21
=>A≤21
MaxA =21 khi
x+4=0
=>x=-4
vậy MaxA =21 khi x=-4
Rút gọn được Q = 1 Þ đpcm.