K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

a,  A O C ^ = O D B ^  (cùng phụ  B O D ^ )

=> DAOC ~ DBDO (g.g)

=>  A C B O = A O B D

=> AC.BD = a.b (không đổi)

b,  Ta có  C O A ^ = O D B ^ = 60 0 , A C O ^ = D O B ^ = 30 0 , AC = a 3 , BD =  b 3 3

i,  S A B C D = 3 a + b 3 a + b 6

ii, 9

17 tháng 4 2017

Hướng dẫn trả lời:

a) Xét hai tam giác vuông AOC và BDO ta có: ˆA=ˆB=900A^=B^=900

ˆAOC=ˆBDOAOC^=BDO^ (hai góc có cạnh tương ứng vuông góc).

Vậy ∆AOC ~ ∆BDO

⇒ACAO=BOBDhayACa=bBD⇒ACAO=BOBDhayACa=bBD (1)

Vậy AC . BD = a . b = không đổi.

b) Khi thì tam giác AOC trở thành nửa tam giác đều cạnh là OC, chiều cao AC.

⇒OC=2AO=2a⇔AC=OC√32=a√3⇒OC=2AO=2a⇔AC=OC32=a3

Thay AC = a√3 vào (1), ta có:

ACa=bBD=a√3.BD=a.b⇒BD=aba√3=b√33ACa=bBD=a3.BD=a.b⇒BD=aba3=b33

Ta có công thức tính diện tích hình thang ABCD là:

S=AC+BD2.AB=a√3+b√332.(a+b)=√36(3a2+4ab+b2)(cm2)S=AC+BD2.AB=a3+b332.(a+b)=36(3a2+4ab+b2)(cm2)

c) Theo đề bài ta có:

∆AOC tạo nên hình nón có bán kính đáy là AC = a√3 và chiều cao là AO = a.

∆BOD tạo nên hình nón có bán kính đáy là BD=b√33BD=b33 và chiều cao OB = b

Ta có: V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a√3)2.a(b√33)2.b=3a3b33=9a3b3V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a3)2.a(b33)2.b=3a3b33=9a3b3

Vậy V1V2=9a3b3

10 tháng 6 2018

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Khi quay hình vẽ xung quanh cạnh AB: ΔAOC tạo nên hình nón, bán kính đáy là AC, chiều cao AO; ΔBOD tạo nên hình nón, bán kính đáy BD, chiều cao OB.

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 4 2019

Khi quay hình vẽ xung quanh cạnh AB: ΔAOC tạo nên hình nón, bán kính đáy là AC, chiều cao AO; ΔBOD tạo nên hình nón, bán kính đáy BD, chiều cao OB.

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

28 tháng 2 2017

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

6 tháng 5 2017

17 tháng 4 2017

Giải:

a) Ta có OM, ON lần lượt là tia phân giác cả AOP và BOP

Mà AOP kể bù BOP nên suy ra OM vuông góc với ON.

Vậy ∆MON vuông tại O.

Lại có ∆APB vuông vì có góc vuông (góc nội tiếp chắn nửa cung tròn)

Tứ giác AOPM nội tiếp đường tròn vì có + = 2v. Nên = (cùng chắn cung OP).

Vậy hai tam giác vuông MON à APB đồng dạng vị có cắp góc nhọn bằng nhau.

b)

Tam giác AM = MP, BN = NP (1) (tính chất hai tiếp tuyến cắt nhau)

Tam giác vuông MON có OP là đường cao nên:

MN.PN = OP2 (2)

Từ 1 và 2 suy ra AM.BN = OP2 = R2

c) Từ tam giác MON đồng dạng với tam giác APB ta có :

Khi AM = thi do AM.BN = R2 suy ra BN = 2R

Do đó MN = MP + PN = AM + BN = + 2R =

Suy ra MN2 =

Vậy =

d) Nửa hình tròn APB quay quanh bán kính AB = 2R sinh ra một hình cầu có bán kính R.

Vậy V = πR3

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.a) cm: tam giác ABC vuông tại C.b) cm NE vuông góc ABc) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)B3: Cho nửa đường tròn (O)đường...
Đọc tiếp

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?

B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.

a) cm: tam giác ABC vuông tại C.

b) cm NE vuông góc AB

c) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)

B3: Cho nửa đường tròn (O)đường kính AB=2R. Gọi Ax, By là các ti8a vuông góc với AB tại A và B(Ax,By và nửa đường tròn cùng thuộc 1 nửa mặt phẳng bờ AB). Qua điểm C thuộc nửa đường tròn( C khác A, B). kẻ đường thẳng d là tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự ở M và N.

a)cm :MN=AM+BN

b) cm \(\Delta\)MON vuông

 c) AC giao với MO tại I, CB giao với ON tại K, cm tứ giác CIOK là hình chữ nhật

d) gọi D là giao điểm của BC  với Ax, cm MD=MA

0
Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em