K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đo: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD
b: Xét ΔAMK và ΔDMF có

\(\widehat{MAK}=\widehat{MDF}\)

MA=MD

\(\widehat{AMK}=\widehat{DMF}\)

Do đo: ΔAMK=ΔDMF

Suy ra: MK=MF

hay M là trung điểm của KF

a: Xét ΔAMB và ΔDMC có

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

b: Xét ΔCBD có 

M là trung điểm của BC

F là trung điểm của DC

Do đó: MF là đường trung bình

=>MF//BD

=>MF//AC

hay MK//AC
Xét ΔBAC có 

M là trung điểm của BC

MK//AC
DO đó: K là trung điểm của BA

Xét tứ giác BKCF có

BK//CF

BK=CF

Do đó: BKCF là hình bình hành

Suy ra: Hai đường chéo BC và KF cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của KF

24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD 

8 tháng 12 2018

a, xét tam giác abm vvaf tam giác dmc có

am=md(gt)

bm=mc(gt)

góc amb=góc cmd(đối đỉnh)

=>tam giác abm=tam giác dmc(cgc)

b, từ cm a ta có tam giác abm=tam giác dmc(cgc)

=>góc bam = góc mdc (2 góc tg ứng)

mà 2 góc lại nằm ở vị trí so le trg

=>ab//cd

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2

12 tháng 3 2022

a. Xét tam giác ABM và tam giác DCM có:

+, BM = MC ( AM là đường trung tuyến của tam giác ABC )

+, Góc AMB = góc DMC ( 2 góc đối đỉnh )

+, AM = MD ( gt )

=> tam giác ABM = tam giác DCM ( c.g.c )

=> AB = CD ( 2 cạnh tương ứng ) 

=> góc BAM = góc CDM ( 2 góc tương ứng ) 

Mà 2 góc này ở vị trí so le trong

=> AB // CD ( đpcm )