Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=3.(3^0+3^1+3^2+3^3+...+3^30)
3A=3^1+3^2+3^3+....+3^31
-
A=3^0+3^1+3^2+3^3+...+3^30
-----------------------------------------------------
2A=3^31-1=3^28+3^3-1=(3^4)^7.3^3-1=(...1).(...7)-1=...6
Suy ra A = ...3 . số chính phương không có tận cùng bằng 3
nhớ tick cho mình nhé chắc chắn đúng
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
\(A=3^1+3^2+3^3+...+3^{100}\)
\(\Rightarrow A=3+3^2\left(1+3+3^2+3^3+...+3^{98}\right)\)
\(\Rightarrow A=3+9\left(1+3+3^2+...+3^{98}\right)\)
Vì \(A\) chia hết cho \(3\); không chia hết cho \(9\)
nên \(A\) không là số chính phương.
\(\RightarrowĐPCM\)
vì 3^2 chia hết cho 3^2
3^3 chia hết cho 3^2
.....
mà 3 ko chia hết cho 3^2
=>A ko là SCP
\(S=1+3+3^2+3^3+....+3^{30}\)
\(3S=\left(1+3+3^2+3^3+...+3^{30}\right).3\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=\left(3+3^2+3^3+...+3^{31}\right)\)\(-\left(1+3+3^2+3^3+...+3^{30}\right)\)
\(2S=3^{31}-1\)
\(S=\frac{3^{31}-1}{2}\)
=>S không phải là số chính phương
A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)
= n2(n + 1).(n3 - n2 + 2) = n2(n + 1).(n3 + 1 + 1 - n2) = n2(n + 1).(n +1). (n2 - n + 1 - n + 1) = n2( n + 1)2.(n2 - 2n + 2)
Với n > 1 => n2 - 2n + 1 < n2 - 2n + 2 < n2
=> (n - 1)2 < n2 - 2n + 2 < n2
(n - 1)2 ; n2 là 2 số chính phương liên tiếp => n2 - 2n + 2 không thể là số chính phương
=> A không là số chính phương