K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(A=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2010^2}>1-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}-\frac{1}{2010}=\frac{1004}{2010}>\frac{1}{2010}\Rightarrow A>\frac{1}{2010}\)

26 tháng 1 2017

\(A=1-\frac{1}{2^2}-...-\frac{1}{2010^2}\)

\(=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

Ta có: \(A=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)\(>\)\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=1-\left(1-\frac{1}{2010}\right)=1-1+\frac{1}{2010}=\frac{1}{2010}\)

26 tháng 1 2017

cảm ơn bn >.<!

bài bn vik thiếu nhưng mik hiểu nên vẫn tick

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

21 tháng 2 2019
  1. TA CÓ A>\(\frac{2010}{2009^2+1+2008}\) +\(\frac{2010}{2009^2+2+2007}\) +...+\(\frac{2010}{2009^2+2009}\)                                                     \(\Rightarrow\)A>2009.\(\frac{2010}{2009^2+2009}\)\(\Rightarrow\)A>\(\frac{2009.2010}{2009.2010}\) \(\Rightarrow\) A>1   (1)                                                                         2.TA CÓ A<\(\frac{2010}{2009^2}\) +\(\frac{2010}{2009^2}\) +...+\(\frac{2010}{2009^2}\)                                                                                               \(\Rightarrow\) A<2009.\(\frac{2010}{2009^2}\) \(\Rightarrow\) A<\(\frac{2010}{2009}\) <2 \(\Rightarrow\) A<2     (2)                                                                                          TỪ (1) VÀ (2) SUY RA 1<A<2 .VẬY A KHÔNG PHẢI SỐ NGUYÊN DƯƠNG    (dpcm)
6 tháng 2 2017

A= \(1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)

B=\(\left(\frac{2012}{1}-1\right)+\left(\frac{2012}{2}-1\right)+...+\left(\frac{2012}{2011}-1\right)\)

= \(\frac{2012}{1}-\frac{2012}{2012}+\frac{2012}{2}-\frac{2012}{2012}+...+\frac{2012}{2011}-\frac{2012}{2012}\)

=\(2012\left(1-\frac{1}{2012}+\frac{1}{2}-\frac{1}{2012}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}\)=\(\frac{2012\left(1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}{1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)= 2012

15 tháng 2 2017

\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)

10 tháng 10 2019

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!