K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)

Từ điều kiện c) ta có :

- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0

- Nếu số k đó là x; z hoặc e :

- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0   =>  -ax5 =  by4 + cz3 + dt2 + e

Dễ thấy by4 + cz3 + dt2 + e > 0  =>  -ax5 > 0 => .... tìm đc x

Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.

Nhờ Kiệt giúp kìa

23 tháng 9 2016

Không có đâu chị ạ

23 tháng 9 2016

có 

thay a=100..0000{63chu so 0}

ta co

a mu 40 < k > a mu 40 .a

vay khoang cach la 10....000  co 63 chu so 0

suy ra k=100...000 co 62 chu so 0

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

NM
20 tháng 3 2021

ta có 

\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)

\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)

Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)

vậy ta có đpcm

12 tháng 7 2017

a) Do \(1010\le n\le2016\)nên:

                \(\sqrt{20203+21\times1010}\le a_n\le20203+21\times2016\)\(\Leftrightarrow204\le a_n\le250\)

b) Ta có:

\(a^2_n=20203+21n=\left(21\times962+1\right)+21n\)

\(\Leftrightarrow a^2_n-1=21\times\left(962+n\right)=3\times7\times\left(962+n\right)\)

\(\Rightarrow\left(a_n-1\right)\left(a_n+1\right)⋮7\Leftrightarrow\hept{\begin{cases}\left(a_n-1\right)⋮7\\\left(a_n+1\right)⋮7\end{cases}}\)

Hay \(a_n+1=7k\)hoặc \(a_n-1=7k\)\(\Rightarrow a_n=7k-1\)hoặc \(a_n=7k+1\left(k\in N\right)\)

\(\Rightarrow dpcm\)

5 tháng 11 2016

nơi bài 2 là Cho p là số nguyên tố > 7 nha

14 tháng 3 2019

Tham khảo: Câu hỏi của Nguyen Nhat Minh - Toán lớp 8 - Học toán với OnlineMath

Nếu olm không hiện link xanh đậm,hãy nhập link này vào trình duyệt của bạn:https://olm.vn/hoi-dap/detail/214469884091.html

2 tháng 11 2019

Ta có:

\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)

\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)

Từ (1) và (2)

=>đpcm

2 tháng 11 2019

Vì \(\sqrt{x}\)là một số hữu tỉ

\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)

Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)

\(\Rightarrow a,b\)là những số nguyên dương (1)

Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)

Vì \(\frac{a}{b}\)là phân số tối giản

\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(a,b)=1

Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)

\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1

\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)

Từ (1), (2) và (3)

=>đpcm