Cho a – b = 4 và a2 + b2 = 106. Không giải tìm a ; b. Hãy tính a3<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)

3 tháng 10 2018

các bạn ơi, giúp mk vs ngày mai mk phải học rồi!!!

help me-.- help me :)

11 tháng 12 2022

\(=\dfrac{a+b+a-b}{a^2-b^2}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)

\(=\dfrac{2a^3+2a^2b^2+2a^3-2ab^2}{a^4-b^4}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)

\(=\dfrac{4a^7+4a^3b^4+4a^7-4a^3b^4}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)

\(=\dfrac{8a^7}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)

\(=\dfrac{8a^{15}+8a^7b^8+8a^{15}-8a^7b^8}{a^{16}-b^{16}}=\dfrac{16a^{15}}{a^{16}-b^{16}}\)

25 tháng 7 2021

Ta có: a + b + c = 0

<=> a2 + b2 + c2 + 2(ab + bc + ac) = 0

<=> a2 + b2 + c2 = -2(ab + bc + ac)

<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2 = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] (vì a + b + c= 0)

<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4(a2b2 + b2c2 + a2c2)

<=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2) (đpcm)

b) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)

<=> (a4 + b4 + c4)/2 = a2b2 + b2c2 + a2c2 + 2abc(a + b + c) (vì a + b + c) = 0

<=> (a4 + b4 + c4)/2 = (ab + bc + ac)2

<=> a4 + b4 + c4 = 2(ab + bc + ac)2 (đpcm)

c) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)

<=> 2(a4 + b4 + c4) = a4+ b4 + c4 + 2(a2b2 + b2c2 + a2c2)

<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2

<=> a4 + b4 + c4 = (a2 + b2 + c2)2/2 (đpcm) 

11 tháng 7 2016

1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)

2. Cần sửa lại thành :  \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)

3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)

11 tháng 7 2016

tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày

13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

5 tháng 4 2019

a)

\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^3+2b^3\ge a^3+ab^2+a^2b+b^3\)

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-ab^2-a^3-b^3\ge0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Vì a , b > 0 nên BĐT trên đúng, mà các phép biến đổi là tương đương

=> ĐPCM

b) Ta có

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

\(\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3ab^2+3a^2b\)

\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Theo câu a , có phần trong ngoặc luôn lớn hơn hoặc bằng 0

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Các phép biến đổi là tương đương => ĐPCm

5 tháng 4 2019

\(\left(a+b\right)^4=a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)

\(\Leftrightarrow8\left(a^4+b^4\right)\ge a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(\Leftrightarrow7\left(a^4+b^4\right)\ge4a^3b+6a^{^2}b^2+4ab^3\)

\(\Leftrightarrow7a^4+7b^4-4a^3b-6a^2b^2-4ab^3\ge0\)

\(\Leftrightarrow4a^3\left(a-b\right)-4b^3\left(a-b\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow4\left(a-b\right)^2\left(a^2+ab+b^2\right)+3\left(a^2-b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra

<=> a=b

\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)

\(\Leftrightarrow a^4+2a^2b^2+b^4-a^3b-2a^2b^2-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> a=b