Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+22+23+...+220
Đặt B=22+23+...+220
=>2B=23+24+...+221
=>2B-B=221-22=221-4
=>A=4+B=4+221-4=221
=>A là lũy thừa của 2(ĐPCM)
b)A=3+32+33+...+3100
=>3A=32+33+...+3101
=>3A-A=3101-3
=>2A=3101-3
=>2A+3=3101-3+3=3101
Vậy 2A+3 là lũy thừa của 3(ĐPCM)
\(S=1+2+2^2+...+2^{99}\)
\(2S=2+2^2+2^3+...+2^{100}\)
\(2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\)
\(S=2^{100}-1\)
\(A=S+1=2^{100}-1+1=2^{100}\left(ĐPCM\right)\)
\(A=S+1\)\(với\)\(S=1+2^1+2^2+...+2^{99}\)
- Xét S = 1 + 21 + 22 +...+ 299
=> 2.S = 2 + 22 + 23 +...+ 2100
=> 2.S - S = 2100 - 1
=> S = 2100 - 1
* A = S + 1 = 2100 - 1 + 1
=> A = 2100
Vậy A là một lũy thừa của 2 (Điều phải chứng minh)
\(a=1+2+2^2+2^3+...+2^{50}\)
\(2a=2+2^2+2^3+...+2^{51}\)
\(2a-a=2^{51}-1\)
\(a+1=2^{51}\Rightarrow a+1\)là một lũy thừa của 2.
Ta có :
\(S=1+3+3^2+3^3+..........+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...................+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+............+3^{100}\right)-\left(1+3+3^2+..........+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của \(3\)
2a = 2 + 22 + 23 + 24 + ... + 251
2a - a = (2 + 22 + 23 + 24 + ... + 251) - (1 + 2 + 22 + 23 + ... + 250)
a = 251 - 1
a + 1 = 251 là lũy thừa của a
2a = 2 + 22 + 23 + 24 + ... + 251
2a - a = (2 + 22 + 23 + 24 + ... + 251) - (1 + 2 + 22 + 23 + ... + 250)
a = 251 - 1
a + 1 = 251 là lũy thừa của a
a) M = 1 + 2 + 22 + 23 + ..... + 22019
= ( 1 + 2 + 4 ) + 23( 1 + 2 + 4 ) +.... + 22016 ( 1 + 2 + 4 )
= 7 ( 1 + 23 + 22016 ) chia hết cho 7 (đpcm)
b) M + 1 = 1 + 1 + 2 + 22 + 23 +... + 22019
= 4 + 22 + 2 3 + .....22019
= 2 x 22 + 23 + .... + 22019
= 2 x 23 + .... + 22019
= 2 x 2 2019
= 22020
A =4+2^2+2^3+...+2^50
A*2=2^3+2^3+2^4+...+2^50+2^51
A=(2^3+2^51)-(2^2+2^2)
A=8+2^51-8
A=2^51
Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 2 + 4 + 2 3 + 2 4 + . . . + 2 51 – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 6 + 2 3 + 2 4 + . . . + 2 51 – ( 7 + 2 3 + . . . + 2 50 ) = 2 51 - 1
Suy ra : A + 1 = 2 51
Vậy A+1 là một lũy thừa của 2