Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô si 3 số không âm
Ta có: \(\frac{a^2}{^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{1}{b^3}}=\frac{3}{b}\)
Tương tự: \(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge\frac{3}{b}\)
\(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge\frac{3}{a}\)
\(\Rightarrow\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=1\)
\(x^2+y^2=3\frac{1}{3}xy\)hay \(x^2+y^2=\frac{10}{3}xy\)
\(\Rightarrow x^2+2xy+y^2=\frac{16}{3}xy\)\(\Rightarrow\left(x+y\right)^2=\frac{16}{3}xy\)
tương tự : \(\left(x-y\right)^2=\frac{4}{3}xy\)
\(\Rightarrow\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{1}{4}\Rightarrow\orbr{\begin{cases}\frac{x-y}{x+y}=\frac{1}{2}\\\frac{x-y}{x+y}=\frac{-1}{2}\end{cases}}\)
vì x > y > 0 nên x - y > 0 \(\Rightarrow\frac{x-y}{x+y}>0\)
Vậy \(\frac{x-y}{x+y}=\frac{1}{2}\)
Xét\(x^2+2xy+y^2=\frac{10}{3}xy+2xy=\frac{16}{3}xy\)
\(x^2-2xy+y^2=\frac{10}{3}xy-2xy=\frac{4}{3}xy\)
Từ đó ta được:
\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{\left(\frac{4}{3}xy\right)}{\left(\frac{16}{3}xy\right)}=\frac{1}{4}\)
\(\Rightarrow\sqrt{\frac{\left(x-y\right)^2}{\left(x+y\right)^2}}=\frac{1}{2}\Rightarrow\left|\frac{x-y}{x+y}\right|=\frac{1}{2}\)
Hihi
đến đây bạn tự làm nốt nha
^-^ Học tốt
\(\frac{2x}{3}+\frac{3x-1}{6}=\frac{x}{2}\)
\(\Leftrightarrow\frac{2x}{3}+\frac{3x-2}{6}-\frac{x}{2}=0\)
\(\Leftrightarrow\frac{4x}{6}+\frac{3x-2}{6}-\frac{3x}{6}=0\)
\(\Leftrightarrow\frac{4x+3x-2-3x}{6}=0\)
\(\Rightarrow4x-2=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
hàng số 2 bị sai rồi .\(\frac{2X}{3}+\frac{3X-1}{6}-\frac{X}{2}=0\)
\(10=a+b+c=\frac{a}{2}+\frac{a}{2}+\frac{b}{3}+\frac{b}{3}+\frac{c}{5}+\frac{c}{5}+\frac{c}{5}+\frac{c}{5}+\frac{c}{5}\) \(\ge10\sqrt[10]{\left(\frac{a}{2}\right)^2\left(\frac{b}{3}\right)^3\left(\frac{c}{5}\right)^5}\)
\(\Rightarrow\sqrt[10]{\left(\frac{a}{2}\right)^2\left(\frac{b}{3}\right)^3\left(\frac{c}{5}\right)^5}\le1\Rightarrow\left(\frac{a}{2}\right)^2\left(\frac{b}{3}\right)^3\left(\frac{c}{5}\right)^5\le1\Rightarrow a^2b^3c^5\le2^23^35^5=337500\)
Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\\a+b+c=10\end{cases}\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{10}=\frac{10}{10}=1\Leftrightarrow\hept{\begin{cases}a=2\\b=3\\c=5\end{cases}}}\)
Vậy GTLN của A là 337500
\(A=\frac{a\left(1+a\right)+\left(2-a\right)\left(1-a\right)}{\left(2-a\right)\left(1+a\right)}=\frac{2a^2-2a+2}{-a^2+a+2}\)
Ta có: \(A=\frac{2\left(a^2-a+1\right)}{-a^2+a+2}=\frac{2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]}{-a^2+a+2}\ge\frac{3}{-2\left(a^2-a-2\right)}\)(làm tắt tí)
\(=\frac{3}{-2\left[\left(a-\frac{1}{2}\right)^2-\frac{9}{4}\right]}=\frac{3}{-2\left(a-\frac{1}{2}\right)^2+\frac{9}{2}}\ge\frac{3}{\frac{9}{2}}=\frac{2}{3}\)
Max tương tự.