K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số,...
Đọc tiếp

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37

Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?

Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?

Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?

Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2

Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số, tận cùng bằng 6 và chia hết cho 9.

 Câu7: 

      a, Có bao nhiêu số có 2 chữ số chia hết cho 9 ?

      b, Tìm tổng các số có 2 chữ số chia hết cho 9 .

Câu8: chứng minh rằng:

      a, 102002 + 8 chia hết cho cả 9 và 2 .

      b, 102004 + 14 chia hết cho cả 2 và 3 .

Câu9: tìm tập hợp A các số tự nhiên x là ước của 75 và là bội của 3.

Câu10: tìm các số tự nhiên x,y sao cho: ( 2x + 1 ). ( y - 5 ) = 12

Câu11: số ababab là số nguyên tố hay hợp số ?

Câu12: chứng minh rằng số abcabc chia hết ít nhất cho 3 số nguyên tố.

Câu13: chứng minh rằng: 2001 . 2002 . 2003 . 2004 + 1 là hợp số.

Câu14: tướng Trần Hưng Đạo đánh tan 50 vạn quân nguyên năm abcd, biết : a là số tự nhiên nhỏ nhất khác 0 ; b là số nguyên tố nhỏ nhất; c là hợp số chẵn lớn nhất có một chữ số; d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất. Vậy abcd là năm nào ?

Câu15: cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số ? vì sao ?

Câu16: tìm 3 số tự nhiên liên tiếp có tích bằng 19 656.

Câu17: tìm số tụ nhiên n biết rằng: 1 + 2 + 3 +...+ n = 1275

Câu18: tìm số chia và thương của một phép chia, biết số bị chia là 150 và số dư là 7.

Câu19: tìm giao của 2 tập hợp A và B :

      a, A là tập hợp các số tự nhiên chia hết cho 3. B là tập hợp các số tự nhiên chia hết cho 9.

      b, A là tập hợp các số nguyên tố. B là tâp hợp các hợp số.

      c, A là tập hợp các số nguyên tố bé hơn 10. B là tập hợp các chữ số lẻ.

                                                                   --------- Hết---------

                                                           GIÚP VỚI, MAI NỘP RỒI. 

11
15 tháng 2 2016

Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi. 


Ta có: 

xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37 

Lại có: 
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37 

Vậy yzx cũng phải chia hết cho 37 


Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.

18 tháng 2 2016

nhiều có làm sao hết 

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

27 tháng 10 2018

\(x^{15}-\left(7+1\right)x^{14}+\left(7+1\right)x^{13}....+\left(7+1\right)x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}....+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}....-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

27 tháng 2 2016

ai ma biet

21 tháng 1 2016

* Sửa:

a) 35 - (-x + 8) = 23 - (-7)

35 + x - 8 = 30

35 + x = 30 + 8

35 + x = 38

x = 38 - 35

x = 3

Vậy, x = 3

 

b) 4 - 2(x - 3) = 3 (3 - x)

4 - (2x - 2 . 3) = 3 . 3 - 3x

4 - (2x - 6) = 9 - (2x + x)

4 - 2x + 6 = 9 - 2x - x

(4 + 6) = 9 - x

10 = 9 - x

9 - 10 = x

-1 = x

x = -1

Vậy, x = -1

21 tháng 1 2016

a/ 35 - ( - x + 8 ) = 23 - ( - 7 )

35 + x +8 = 23 + 7

.......

4 tháng 2 2016

với a<b<c<d nha

 

14 tháng 3 2017

ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)

vậy Min A= c+d-a-b

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)