K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

Chú ý nên giữ nguyên đơn vị của a(mm); D(m); \(\lambda (\mu m)\)

Ví trí vân sáng đỏ bậc 2 và vân sáng tím bậc 2 lần lượt là
\(x_{sđỏ} = 2.i_{đỏ}= 2.\frac{\lambda_{đỏ}D}{a}.\)

\(x_{stím} = 2.i_{tím}= 2.\frac{\lambda_{tím}D}{a}.\)

=> \(x_{sđỏ}-x_{s tím}= 2.\frac{D}{a}(\lambda_{đỏ}-\lambda_{tím})=4,8mm.\)

4 tháng 6 2016
+ Khoảng vân: \(i=\frac{\lambda D}{a}=1,8\left(mm\right)\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\) 
\(\Rightarrow\) Tại M là vân sáng bậc 3.
4 tháng 6 2016

 

Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có 

 

A.  vân sáng bậc 2

B. vân sáng bậc 4

C. vân sáng bậc 3 

D. vân sáng thứ 4

13 tháng 1 2016

Bề rộng quang phổ liên tục bậc 3 là 

\(L = x_{đỏ}^k-x_{ tím}^k= 3\frac{D}{a}(\lambda_d-\lambda_t)=2,85mm.\)

Với \(D = 2m; a= 0,8mm; \lambda_d = 0,76 \mu m; \lambda_t = 0,38 \mu m.\)

30 tháng 11 2015

Tia đỏ có tia ló đối xứng qua mặt phân giác --> Tia đỏ có góc lệch cực tiểu, khi đó, bạn vẽ hình ra sẽ tìm được góc tới i1

sin i1 / sin 300 = căn 2 --> i1 = 450.

Sau đó, áp dụng công thức thấu kính để tìm góc r2, bạn sẽ thấy xảy ra phản xạ toàn phần với một phần tia sáng --> Tia màu tím không ló ra được

--> Đáp án A sai.

4 tháng 2 2016

Số vân sáng quan sát được là
\(N_s = N_{s1}+ N_{s2}-N_{trung nhau} =17.\)

Số vân sáng của \(\lambda_1\) trên trường giao thoa L là 

\(N_{s1}= 2.[\frac{L}{2i_1}]+1 = 9.\)

=>  \(N_{s2}= N_s-N_{s1}-N_{trung nhau} = 17-9+3=11.\)

 

13 tháng 2 2018

Đáp án B

2 tháng 2 2016

ta có:     \(i=\frac{D\lambda}{a}\)

Ta tính được 2 khoảng vân là 0,4mm ; 0,48mm và 0,72 mm tỉ lệ này là 5:6:9 bội chung nhỏ nhất của bộ 3 số này là 90
Như vậy vị trị vân cùng màu với vân trung tâm là ở cực đại số 10 của bước sóng đỏ

\(d=10i_d=7,2cm\)

b)Trong khoản giữa 2 vân này sẽ có 17 cực đại tím, 14 cực đại lam và 9 cực đại đỏ 

c)Xét bước sóng tím sẽ có cực đại số 9 trùng với cực đại số 5 của bước sóng đỏ.   cực đại số 6;12 trùng với cực đại số 5;10 của bước sóng lam. Do đó quan sát được 14 cực đại tím
Xét bước sóng lam sẽ có cực đại số 3;6;9;12 trùng với cực đại số 2;4;6;8 của bước sóng đỏ.   cực đại số 5;10 trùng với cực đại số 6;12 của bước sóng tím. Do đó quan sát được 8 cực đại lam
Xét bước sóng đỏ sẽ có cực đại số 2;4;6;8 trùng với cực đại số 3;6;9;12 của bước sóng đỏ.   cực đại số 5 trùng với cực đại số 9 của bước sóng tím. Do đó quan sát được 4 cực đại đỏ

2 tháng 2 2016

5

10 tháng 3 2016

\(x=1,5i=1,5\frac{D\lambda}{a}=1,5mm\)
Đáp án D

10 tháng 3 2016

Đáp an : chọn D

Cho một lăng kính tam giác đều ABC, góc chiết quang là A. Chiết suất của chất làm lăng kính phụ thuộc vào bước sóng ánh sáng theo công thức \(n=1+\frac{b}{\text{λ}^2}\left(1\right)\)Trong đó \(a=1,26;b=7,555.10^{-14}m^2\) còn λ được đo bằng đơn vị mét. Chiếu một tia sáng trắng vào mặt bên AB của lăng kính sao cho thia tới nằm dưới pháp tuyến điểm tới. Tia tím có bước sóng...
Đọc tiếp

Cho một lăng kính tam giác đều ABC, góc chiết quang là A. Chiết suất của chất làm lăng kính phụ thuộc vào bước sóng ánh sáng theo công thức \(n=1+\frac{b}{\text{λ}^2}\left(1\right)\)

Trong đó \(a=1,26;b=7,555.10^{-14}m^2\) còn λ được đo bằng đơn vị mét. Chiếu một tia sáng trắng vào mặt bên AB của lăng kính sao cho thia tới nằm dưới pháp tuyến điểm tới. Tia tím có bước sóng  \(\text{λ}_t=0,4\text{μm}\) còn tia đới nằm dưới phép tuyến tại điểm tới. Tia tím có bước sóng \(\text{λ}_t=0,4\text{μm}\) , còn tia đỏ có bước sóng  \(\text{λ}_đ=0,7\text{μm}\) 

a/ Xác định gói tới của tia sáng trên  mặt AB sao cho tia tím co góc lệch là cực tiểu. Tính góc lệch đó.
b/ Bây giờ muốn tia đỏ đó có góc lệch cực thiểu thì quảy quay lăng kính quanh cạnh A một góc là bao nhiêu? theo chiều nào>
c/ Góc tới của tia sáng trên mặt ABC thỏa mãn điều kiện nào thì không có tia nào trong chùm sáng trắng đó la khỏi mặt AC.

 

1
27 tháng 1 2016

a/ Chiết suất của lăng kính đối với tia tím và đỏ tính theo (1) là:

\(n_t=1,7311\text{≈}\sqrt{3};\)\(n_đ=1,4142\text{≈}\sqrt{2}\)

Khi góc lệch của tia tím là cực tiểu thì: \(\iota'_1=\iota_2\Rightarrow r_1=r_2=\frac{A}{2}\)

và \(D_{min}=2\iota_1-A\) hay \(\iota_1=\frac{D_{tmin}+A}{2}\)

 

áp dụng công thức : \(\sin\iota_1=n\sin r_1\) ta được \(\sin D_{tmin}+A_2=n_t\sin\frac{A}{2}\)

 

Đối với tia tím \(n_t=\sqrt{3}\) và biết \(A=60^0\), ta được:

\(\sin D_{tmin}+A_2=60^0\Rightarrow D_{tmin}=60^0\)

Góc tới của tia sáng trắng ở mặt AB phải bằng:\(i_t=60^0\)

b/ Tương tự như vậy, muốn cho góc lệch của tia đỏ là cực tiểu thì:

\(\sin\frac{D_{dmin}+A}{2}=n_d\sin\frac{A}{2}\Rightarrow D_{dmin}=30^0\)

và góc tới của tia sáng trắng trên mặt AB là: \(i_đ=45^0\)

Như vậy phải giảm góc tới trên mặt AB một góc là :\(i_t-t_đ=15^0\), tức là phải quay lăng kính quanh cạnh A một góc  \(15^0\) ngược chiều kim đồng hồ.

c/Gọi   \(r_{0đ}\)và \(r_{0t}\)  là các góc giới hạn phản xạ toàn phần của tia đỏ và tia tím ta có:

\(\sin r_{0đ}=\frac{1}{n_d}=\frac{1}{\sqrt{2}}\Rightarrow r_{0đ}=45^0\)

\(\sin r_{0t}=\frac{1}{n_t}=\frac{1}{\sqrt{3}}\)=>r0t < r .Do đó muốn cho không có tia sáng nào ló ra khỏi mặt AC của lăng kính thì phải có: r2 \(\ge\)r0đ  \(\Rightarrow r_2\ge15^0\)

Hay \(\sin r_1\ge\sin\left(60^0-45^0\right)=0,2588\)

Biết \(\sin r_{1t}=\frac{\sin\iota}{n_t},\sin r_{1đ}=\frac{\sin\iota}{n_d}\); vì \(n_t\le n_đ\)nên suy ra \(r_{1t}\le\sin r_{1đ}\)(2)

Từ (1) và (2) ta thấy bất đẳng thức (1) được thõa mãn đối với mọi tia sáng, nghĩa là không có tia nào trong chùm sáng trắng ló ra khỏi mặt AC, nếu

\(\sin r_{1đ}\le0,2588\)hay \(\frac{\sin\iota}{n_đ}<0,2588\)

\(\Rightarrow\sin i\le0,2588.n_đ\)\(\Rightarrow\sin\le0,36\) .Suy ra góc tới:\(i\le21^06'\)

 

O
ongtho
Giáo viên
23 tháng 1 2016

Tại vị trí cách vân trung tâm 3 mm có vân sáng bậc \(k\) của bức xạ \(\lambda\) khi 

\(x=3mm = ki =k\frac{\lambda D}{a}.\)

=> \(\lambda = \frac{3.a}{D k}.(1)\)

Mặt khác : \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)

<=> \(0,38 \mu m \leq \frac{3a}{kD} \leq 0,76 \mu m.\)

<=> \(\frac{3.0,8}{0,76.2} \leq k \leq \frac{3.0,8}{0,38.2} \)

Giữ nguyên đơn vị của \(x = 3mm; a = 0,8mm;\lambda = 0,76 \mu m;0,38 \mu m; D= 2m\)

<=> \(1,57 \leq k \leq 3,15.\)

<=> \(k = 2,3.\)

Thay vào (1) ta thu được hai bước sóng là \(\lambda_1 = \frac{3.0,8}{2.2}=0,6\mu m.\)

                                                                    \(\lambda_2 = \frac{3.0,8}{3.2}=0,4\mu m.\)