Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=\frac{43^2-11^2}{\left(36,5\right)^2-\left(27,5\right)^2}\)
\(=\frac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}\)
\(=\frac{32.54}{9.64}\)
\(=\frac{6}{2}=3\)
Bạn viết sai đề bài rồi
\(S=\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83-97.83\)
\(=\left(97-83\right)^2=14^2=196\)
Trả lời:
\(R=\frac{43^2-11^2}{36,5^2-27,5^2}\)
\(R=\frac{\left(43-11\right).\left(43+11\right)}{\left(36,5-27,5\right).\left(36,5+27,5\right)}\)
\(R=\frac{32.54}{9.64}\)
\(R=3\)
Đề bài sai bạn nhé
\(S=\frac{97^3+83^3}{180}-97.83\)
\(S=\frac{\left(97+83\right).\left(97^2-97.23+83^2\right)}{180}-97.83\)
\(S=97^2-97.83+83^2-97.83\)
\(S=97^2-2.97.83+83^2\)
\(S=\left(97-83\right)^2\)
\(S=14^2\)
\(S=196\)
\(a,\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=\frac{180\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83^2-97.83\)
\(=97^2+83^2-2.97.83\)
\(=\left(97-83\right)^2\)
\(=14^2=196\)
Bài 1:
\(\frac{97^3+83^3}{180}-97\cdot83=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(=97^2-97\cdot83+83^2-97\cdot83=97^2-2\cdot97\cdot83+83^2\)
\(=\left(97-83\right)^2=14^2=196\)
Bài 2:
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
\(A=\dfrac{97^3+83^3}{180}-97.83\)
\(A=\dfrac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(A=\dfrac{180\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(A=97^2-97.83+83^2-97.83\)
\(A=97^2-2.97.83+83^2\)
\(A=\left(97-83\right)^2\)
\(A=14^2\)
\(A=196\)
Nốt câu c
\(C=\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^3\right)}{180}-97.83\)
\(=\frac{180.\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83^2-97.83\)
\(=\left(97-83\right)^2=14^2=196\)
1.
a) \(2\left(x+3\right)-x^2-3x=0\)
⇔ \(2\left(x+3\right)-x\left(x+3\right)=0\)
⇔ \(\left(x+3\right)\left(2-x\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
b) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
⇔ \(\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
⇔ \(3x\left(x+2\right)=0\)
⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c) \(x^2-4x+3=0\)
⇔ \(x\left(x-1\right)-3\left(x-1\right)=0\)
⇔ \(\left(x-1\right)\left(x-3\right)=0\)
⇔ \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
2, a) \(B=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)-2x\)
⇔ \(B=8x^3+27-8x^3+2-2x=29-2x\)
Tại x = 3
Thì B = 29 - 6 = 23
a) \(A=\frac{97^3+83^3}{180}-97\cdot83\)
\(A=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=\frac{180\cdot\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=97^2-97\cdot83+83^2-97\cdot83\)
\(A=9409-2\cdot8051+6889\)
\(A=196\)
b) \(B=\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(B=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)
\(B=50+49+48+47+...+2+1\)
Số số hạng là : \(\left(50-1\right):1+1=50\)( số )
Tổng B là : \(\left(50+1\right)\cdot50:2=1275\)
Vậy....
\(C=\frac{97^3+83^3}{180}-97.83\)
\(C=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(C=\frac{180\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(C=97^2-97.83+83^2-97.83\)
\(C=97^2-2.97.83+83^2\)
\(C=\left(97-83\right)^2=14^2=196\)