K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

các bạn giúp bài kiểm tra này nhé:Phần Trắc nghiệm (3đ)Câu 1. Cho hàm số y = f(x) = 2x2 + 3. Khi đó:A. f(0) = 5 B. f(1) = 7 C. f(-1) = 1 D. f(-2) = 11Câu 2. Giá trị của biểu thức: \(\frac{-5}{37}+\frac{-4}{13}+\frac{5}{37}+\frac{-9}{13}\) bằng:A. 1 B. -1 C. 0 D. 2Câu 3. Chọn câu trả lời đúng nhất: \(\sqrt{0,04}\) bằng:A. 0,02 B. 0,02 và -0,02 C....
Đọc tiếp

các bạn giúp bài kiểm tra này nhé:

Phần Trắc nghiệm (3đ)

Câu 1. Cho hàm số y = f(x) = 2x2 + 3. Khi đó:

A. f(0) = 5 B. f(1) = 7 C. f(-1) = 1 D. f(-2) = 11

Câu 2. Giá trị của biểu thức: \(\frac{-5}{37}+\frac{-4}{13}+\frac{5}{37}+\frac{-9}{13}\) bằng:

A. 1 B. -1 C. 0 D. 2

Câu 3. Chọn câu trả lời đúng nhất: \(\sqrt{0,04}\) bằng:

A. 0,02 B. 0,02 và -0,02 C. 0,2 và -0,2 D. 0,2

Câu 4. Chọn câu trả lời đúng nhất:

Vẽ 4 đường thẳng a, b, c, d sao cho \(a \bot d; b \bot d; c \bot d.\) Ta có các đường thẳng song song với nhau là:

A. \(a \bot b\) B. \(a \bot c\) C. a // b // c D. Cả A, B, C đều sai

Câu 5. Trong tam giác ABC có:

A. \(A ̂+B ̂+C ̂=180° \) B. \(A ̂+B ̂+C ̂=90° \)

C. \(A ̂+B ̂+C ̂<180°\) D. \(A ̂+B ̂+C ̂>180°\)

Câu 6. Cho ΔABC = ΔDEF, biết \(B ̂=70°\); \(C ̂=50°\); EF = 3cm. Khi đó ta có:

A. \(D ̂=50°;BC=2cm\) B. \(D ̂=60°;BC=3cm\)

C. \(D ̂=70°;BC=3cm\) D. \(D ̂=80°;BC=5cm\)

Phần Tự luận (7đ)

Bài 1: (1đ) Tìm x, biết:

a) \(x:8,5=0,69:\left(-1,15\right)\) b) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)

Bài 2: (1,5đ)

a) Vẽ đồ thị của hàm số y= -3x

b) Điểm nào sau đây thuộc hay không thuộc đồ thị của hàm số trên?

E(2; -3) , F(-1; 3)

Bài 3. (1,5đ)

Tính độ dài các cạnh của một tam giác biết chu vi là 22 và các cạnh tam giác tỉ lệ với các số 2; 4; 5.

Bài 4. (3đ)

Cho ΔABC có AB = AC. M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM = MD.

a) Chứng minh AB = DC.

b) Chứng minh AB // DC.

c) Chứng minh CB là tia phân giác của GÓC ACD.

------------------------------HẾT ------------------------------

1

Câu 4: 

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=DC
b: ta có: ABDC là hình bình hành

nên AB//DC

c: Xét hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

=>CB là tia phân giác của góc ACD

15 tháng 9 2016

Cau a la 1

Cau b la 1215

Cau c la 768

Cau d la \(\frac{4185}{13}\)

15 tháng 9 2016

\(\frac{4^2.4^3}{2^{10}}=\frac{4^{2+3}}{\left(2^2\right)^5}=\frac{4^5}{4^5}=1\)

\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=1215\)

\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^2.2^5.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^2.2^5.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)

\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\left(-3\right)^3=-27\)

ĐỀ 2I. PHẦN TRẮC NGHIỆM: (3 điểm) Khoanh tròn chữ cái đứng trước câu trả lời đúng: 1. Trong các khẳng định sau, khẳng định sai là:A. I ⊂ R B. I ∪ Q = R C. Q ⊂ I D. Q ⊂ R2. Kết quả của phép nhân (-0,5)3.(-0,5) bằng:A. (-0,5)3 B. (-0,5) C. (-0,5)2 D. (0,5)43. Giá trị của (-2/3) ³ bằng:4. Nếu | x | = |-9 |thì:A. x = 9 hoặc x = -9 B. x = 9B. x = -9 D. Không có giá trị nào...
Đọc tiếp

ĐỀ 2

I. PHẦN TRẮC NGHIỆM: (3 điểm)

Khoanh tròn chữ cái đứng trước câu trả lời đúng:

1. Trong các khẳng định sau, khẳng định sai là:

A. I ⊂ R B. I ∪ Q = R C. Q ⊂ I D. Q ⊂ R

2. Kết quả của phép nhân (-0,5)3.(-0,5) bằng:

A. (-0,5)3 B. (-0,5) C. (-0,5)2 D. (0,5)4

3. Giá trị của (-2/3) ³ bằng:

2016-10-19_230615

4. Nếu | x | = |-9 |thì:

A. x = 9 hoặc x = -9 B. x = 9

B. x = -9 D. Không có giá trị nào của x để thỏa mãn

5. Kết quả của phép tính 36.34. 32 bằng:

A. 2712 B. 312 C. 348 D. 2748

6. Kết quả của phép tính 2016-10-19_230918

A. 20 B. 40 C. 220 D. 210

II. PHẦN TỰ LUẬN: (7 điểm)

Bài 1: (1,5đ) Thực hiện phép tính (bằng cách hợp lí nhất nếu có thể).

2016-10-19_231021

Bài 2: (1,5đ) Tìm x, biết:

2016-10-19_231055

Bài 3: (2đ) Ba cạnh của tam giác lần lượt tỉ lệ với các số 3; 4; 5 và chu vi tam giác đó là 36 cm. Tính độ dài các cạnh của tam giác.

Bài 4: (2đ) Cho biểu thức A = 3/(x-1)

a) Tìm số nguyên x để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.

b) Tìm số nguyên x để A đạt giá trị lớn nhất và tìm giá trị lớn nhất đó.

1
15 tháng 11 2016

ĐỀ 2

I. PHẦN TRẮC NGHIỆM: (3 điểm)

Khoanh tròn chữ cái đứng trước câu trả lời đúng:

1. Trong các khẳng định sau, khẳng định sai là:

A. I ⊂ R

B. I ∪ Q = R

C. Q ⊂ I

D. Q ⊂ R

2. Kết quả của phép nhân (-0,5)3.(-0,5) bằng:

A. (-0,5)3

B. (-0,5)

C. (-0,5)2

D. (0,5)4

3. Giá trị của (-2/3) ³ bằng:

2016-10-19_230615

=> Chọn B

4. Nếu | x | = |-9 |thì:

A. x = 9 hoặc x = -9

B. x = 9

B. x = -9

D. Không có giá trị nào của x để thỏa mãn

5. Kết quả của phép tính 36.34. 32 bằng:

A. 2712

B. 312

C. 348

D. 2748

=> 39168

6. Kết quả của phép tính 2016-10-19_230918

A. 20
B. 40
C. 220
D. 210
=> 1024
15 tháng 11 2016

còn phần tự luận nx mà cj

3 tháng 12 2016

Câu 1:

Giải:

Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=-3k,z=5k\)

\(xyz=-30000\)

\(\Rightarrow2k\left(-3\right)k5k=-30000\)

\(\Rightarrow\left(-30\right).k^3=-30000\)

\(\Rightarrow k^3=1000\)

\(\Rightarrow k=10\)

\(\Rightarrow x=20;y=-30;z=50\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(20;-30;50\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)

Tương tự ta có b = c, c = d, d = a

\(\Rightarrow a=b=c=d\)

\(\Rightarrowđpcm\)

3 tháng 12 2016

3, áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)

\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)

\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)

\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)

\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)

từ (1).(2).(3)(4)=>a=b=c=d(dpcm)

 
5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)