Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5 . 13 có các ước là 1, 5, 13, 65.
Lưu ý. Muốn tìm các ước của a . b ta tìm các ước của a, của b và tích của mỗi ước của a với một ước của b.
b) Các ước của 25là 1, 2, 22, 23, 24, 25 hay 1, 2, 4, 8, 16, 32.
c) Các ước của 32 . 7 là 1, 3, 32, 7, 3 . 7, 32. 7 hay 1, 3, 9, 7, 21, 63.
Bài giải:
a) 5 . 13 có các ước là 1, 5, 13, 65.
Lưu ý. Muốn tìm các ước của a . b ta tìm các ước của a, của b và tích của mỗi ước của a với một ước của b.
b) Các ước của 25là 1, 2, 22, 23, 24, 25 hay 1, 2, 4, 8, 16, 32.
c) Các ước của 32 . 7 là 1, 3, 32, 7, 3 . 7, 32. 7 hay 1, 3, 9, 7, 21, 63.
a = {1;5;13;65}
b = {1;2;4;8;16;32}
c = {1;3;7;9;21;63}
\(a=p_1^m.p_2^n\Rightarrow a^3=p_1^{3m}.p_2^{3m}.\) Số ước của \(a^3\)là ( 3m + 1 ) ( 3n + 1 ) = 40 , suy ra m = 1 , n = 3 ( hoặc m = 3 , n = 1 )
Số \(a^2=p_1^{2m}.p_2^{2n}\) có số ước là ( 2m + 1 ) ( 2n + 1 ) = 3 . 7 = 21 ( ước )
ủng hộ mk nhé k nhiều vô .
a) Để \(\frac{12}{3n-1}\) là số nguyên thì \(12⋮3n-1\)
Mà \(Ư\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Hay \(3n-1\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
3n - 1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | \(\frac{-11}{3}\) | \(\frac{-5}{3}\) | \(-1\) | \(\frac{-2}{3}\) | \(\frac{-1}{3}\) | \(0\) | \(\frac{2}{3}\) | \(1\) | \(\frac{4}{3}\) | \(\frac{5}{3}\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) |
ĐCĐK | loại | loại | TM | loại | loại | TM | loại | TM | loại | loại | loại | loại |
Vậy \(n\in\left\{-1;0;1\right\}\)
b) Để \(\frac{2n+3}{7}\)là số nguyên thì \(2n+3⋮7\)
Mà \(B\left(7\right)\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Hay \(2n+3\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
2n + 3 | -35 | -28 | -21 | -14 | -7 | 7 | 14 | 21 | 28 | 35 | ... |
n | \(-19\) | \(\frac{-31}{2}\) | \(-12\) | \(\frac{-17}{2}\) | \(-5\) | \(2\) | \(\frac{11}{2}\) | \(9\) | \(\frac{25}{2}\) | \(16\) | ... |
ĐCĐK | TM | loại | TM | loại | TM | TM | loại | TM | loại | TM | ... |
Vậy \(n\in\left\{-19;-12;-5;2;9;16;...\right\}\)
c) Mik chx lm đc, sr, bn thông cảm!
Sao chả ai trả lời câu hỏi này hít dọ huhu. Mk cũng đag cần gấp lắm...huwaaaaaaaaaaaa
cho số tự nhiên B=ax.by trong đó a,b là các số nguyên tố khác nhau , x,y là các số tự nhiên khác 0 . Biết B2 có 15 ước.Hỏi B3 có bao nhiêu ước
B2 =a2x .b2y có ( 2x+1)(2y+1) = 15 = 3.5 => x =1 ; y =2 ; ngược lại
B3 = a3x.b3y có ( 3x+1)(3y+1) = (3.1+1)(3.2+1) =4.7 = 28
=> B3 có 28 ước
a) Vì 12 + 8 = 20 nên A = {20}
Vậy tập hợp A có 1 phần tử .
b) Vì 7 - 7 = 0 nên B = {0}
Vậy tập hợp A có 1 phần tử .
c) Vì số nào nhân 0 cũng bằng 0 nên C = {0;1;2;3;...}
Tập hợp C có vô số phần tử .
d) Vì x không thỏa mãn nên D = {\(\varphi\)}
a) Có 4 ước số
b) Có 16 ước số
c) Có 8 ước số
d) có 12 ước số.