K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015

S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015

S1 = (-1) + (-1) + ... + (-1) + 2015

2014 : 2 = 1007

S1 = (-1) . 1007 + 2015

S1 = (-1007) + 2015

S1 = 1008

b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016

S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]

S2 = 2 + 2 + ... 2

2016 : 2 = 1008

S2 = 2 . 1008

S2 = 2016

c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)

S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]

S3 = (-2) + (-2) + ... + (-2)

(2015 - 1) : 2 + 1 = 1008 : 2 = 504

S3 = (-2) . 504

S3 = -1008

d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016

S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0

S4 = 2016 + 0

S4 = 2016

17 tháng 2 2020

a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)

b, làm tương tự phần a

c, cũng làm tương tự

d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)

13 tháng 2 2020

a, s1 có 2015 hạng tử

=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008

16 tháng 2 2020

Lời giải:

a,S1=1+(-2)+3+(-4)+...+(-2014)+2015

=(1-2)+(3-4)+...+(2013-2014)+2015

=-1+(-1)+...+(-1)+2015

=-1.1007+2015

=(-1007)+2015

=1008

b,S2=(-2)+4+(-6)+8+...+(-2014)+2016

=(-2+4)+(-6+8)+...+(-2014+2016)

=2+2+...+2

=2.504

=1008

c,S3=1+(-3)+5+(-7)+...+2013+(-2015)

=(1-3)+(5-7)+...+(2013-2015)

=(-2)+(-2)+...+(-2)

=(-2).504

=-1008

d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016

=(-2015+2015)+...+0+2016

=0+...+0+2016

=2016

STUDY WELL !

20 tháng 3 2020

a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)

\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)

Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015

\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)

<=>S=-1007+2015

<=> S=1008

27 tháng 2 2016

Bài 2 : a) Ta có :

\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)

=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)

=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)

=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)

Vì 4 chia hết cho 4 => S chia hết cho 4

b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)

=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)

Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0

27 tháng 2 2016

S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015

=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016

=> 3S - S = 32016 - 1

=> S = ( 32016 - 1 ) : 2

Ta có 32016 = ( 34 )504 = 81504 = .......1

=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5

Vậy chữ số tận cùng của S là 5

13 tháng 12 2015

x1 + x2 = ...= x2013 + x2014 = 1 
nên : ( x1 + x) + ..... + (x2013 + x2014 ) = 1007
hay x1 + .... + x2014 = 1007
mà x1 + x 2 + .... + x2015  = 0 
Vậy x2015 = - 1007 

9 tháng 1 2016

chế mô giải sớm nhất mình tick cho