\(B=\frac{10^{2015}}{10^{2015}-3}\)\(A=\frac{10^{2015}+2}{10^{2015}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

??????????????????????????????????????????????????????????????????????????????????????

9 tháng 6 2016

1/ Do A > 1 ; B < 1 nên A > B

2/ Áp dụng a/b > 1 <=> a/b < a+m/b+m ( a,b,m thuộc N*)

Do A > 1 nên A < 20158 + 3 + 1 / 20158 - 2 + 1 = 20158 + 4 / 20158 - 1 = B

=> A < B

28 tháng 3 2018

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\) 

                 = \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)

                 = \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)

                 = \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)

                 = 1 + \(\frac{1999}{2000^{2016}+1}\)

    2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)

                 = \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)

                 = 1 + \(\frac{1999}{2000^{2015}+1}\)

So sanh 

câu b tiếp 

So sánh 2000A với 2000B  

Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)

→ 2000A< 2000B

→ A<B

 

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2016}+1}{10^{2015}+1}>\frac{10^{2016}+1+9}{10^{2015}+1+9}=\frac{10^{2016}+10}{10^{2015}+10}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2015}+1}{10^{2014}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

5 tháng 3 2016

A<B

100% K MHE

22 tháng 3 2016

10A=(10^2014+1).10/10^2015+1=10^2015+10/10^2015+1=10^2015+1+9/10^2015+1=1+(9/10^2015+1)                                                              10B=(10^2015+1).10/10^2016+1=10^2016+10/10^2016+1=10^2016+1+9/10^2016+1=1+(9/10^2016+1)                                                            Vì 9/10^2015+1>9/10^2016+1 nên 10A>10B .Từ đó suy ra A>B 

30 tháng 3 2016

tum lum the bn

5 tháng 8 2015

xét A ta có 

\(10A=\frac{10.\left(10^{2014}+1\right)}{10^{2015}+1}=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}\)suy ra \(10A=1+\frac{9}{10^{2015}+1}\)

xét B ta có 

\(10B=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}=\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

Vì 10A>10B suy ra A >B

 

30 tháng 3 2018

10A = 10 2015 + 1 10. 10 2014 + 1

= 10 2015 + 1 10 2015 + 10

= 10 2015 + 1 10 2015 + 1 + 9

suy ra 10A = 1 + 10 2015 + 1 9