Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
\(P=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
ĐKXĐ : \(n\ne-1\)
\(=\frac{n^3+n^2+n^2+n-n-1}{n^3+2n^2+2n+1}=\frac{n^2\left(n+1\right)+n\left(n+1\right)-\left(n+1\right)}{\left(n^3+1\right)+2n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)
Với n nguyên, đặt ƯC( n2 + n - 1 ; n2 + n + 1 ) = d
=> n2 + n - 1 ⋮ d và n2 + n + 1 ⋮ d
=> ( n2 + n + 1 ) - ( n2 + n - 1 ) ⋮ d
=> n2 + n + 1 - n2 - n + 1 ⋮ d
=> 2 ⋮ d => d = 1 hoặc d = 2
Dễ thấy n2 + n + 1 ⋮/ 2 ∀ n ∈ Z ( bạn tự chứng minh )
=> loại d = 2
=> d = 1
=> ƯCLN( n2 + n - 1 ; n2 + n + 1 ) = 1
hay P tối giản ( đpcm )
a, \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
\(\Leftrightarrow\) \(\frac{n^3+2n^2-1}{n^3+2n^2-1+2n+1+1}\)
\(\Leftrightarrow\) \(\frac{n^3+2n^2-1}{\left(n^3+2n^2-1\right)+2n+2}\)
\(\Leftrightarrow\) \(\frac{1}{2n+2}\) (ĐKXĐ: n \(\ne\) -1)
b, Nếu n là một số nguyên khác -1 thì giá trị của phân thức ở câu a) luôn là phân số tối giản, vì \(\frac{1}{2n+2}\) không thể rút gọn được cho bất kì số nào hết nếu được xác định, vì vậy phân số đó luôn tối giản.
Chúc bn học tốt!!
\(=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{ }{ }\)
\(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\left(n\ne-1\right)\)
b. Gọi ước chung lớn nhất của n^2+n-1 và n^2+n+1 là d
\(n^2+n-1=n\left(n+1\right)-1⋮d\Rightarrow d\)là số lẻ(1)
Mặt khác: \(\left(n^2+n+1\right)-\left(n^2+n-1\right)=2\)
\(\Rightarrow2⋮d\)(2)
(1)(2)=> d =1 tuc n^2+n-1 và n^2+n+1 là hai số nguyên tố cùng nhau
Vậy thì A tối giản
a: Gọi d=UCLN(2n+1;5n+2)
\(\Leftrightarrow10n+5-10n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(2n+1;5n+2)=1
hay 2n+1/5n+2 là phân số tối giản
b: Gọi d=UCLN(12n+1;30n+2)
\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(12n+1;30n+2)=1
=>12n+1/30n+2là phân số tối giản
c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)
\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)
\(\Leftrightarrow n+1⋮d\)
\(\Leftrightarrow2n+2⋮d\)
\(\Leftrightarrow2n+2-2n-1⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản
Gọi d là ƯCLN của \(2n+3\) và \(2n^2+4n+1\)
Ta có:\(2n+3⋮d\left(1\right);2n^2+4n+1⋮d\)\(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)
\(\Rightarrow\)\((2n^2+4n+1)-\left(2n+3\right)⋮d\)
\(\Rightarrow n+1⋮d\) \(\Rightarrow\)\(2n+2⋮d\) (2)
Từ (1) và (2) \(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
Hay \(1⋮d\)\(\Rightarrow d=\pm1\)
\(\Rightarrowđpcm\)
chúc các bn hc tốt
Em thử nhé, ko chắc đâu
a) \(B=\frac{n^3+2n^2+2n+1}{n^3+2n^2+2n+1}-\frac{2n+2}{n^3+2n^2+2n+1}=1-\frac{2\left(n+1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=1-\frac{2}{n^2+n+1}=\frac{n^2+n-1}{n^2+n+1}\)
b) Đặt (n2+n-1 ; n2+n+1) = d
Thì \(\left\{{}\begin{matrix}n^2+n-1⋮d\\n^2+n+1⋮d\end{matrix}\right.\Rightarrow2⋮d\)
Dễ thấy d khác 2 vì n2+n-1 ; n2+n+1 luôn là số lẻ với mọi n thuộc Z.
Do đó d = 1 hay phân số rút gọn luôn tối giản
\(B=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{\left(n^3+n^2\right)+\left(n^2-1\right)}{\left(n^3+n^2\right)+\left(n^2+n\right)+\left(n+1\right)}=\frac{n^2\left(n+1\right)+\left(n+1\right)\left(n-1\right)}{n^2\left(n+1\right)+n\left(n+1\right)+\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)
\(Gọi:d=\left(n^2+n+1,n^2+n-1\right)\Rightarrow n^2+n+1-\left(n^2+n-1\right)⋮d\Leftrightarrow n^2-n^2+n-n+1+1⋮d\Leftrightarrow2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
\(n^2+n+1=n\left(n+1\right)+1\)n và n+1 là 2 so tự nhiên liên tiếp => có 1 so chan trong 2 so n và n+1 \(\Rightarrow n\left(n+1\right)chan\Rightarrow n\left(n+1\right)+14le\Rightarrow n^2+n+1\text{ }le\Rightarrow d\text{ }le\Rightarrow d=1\Rightarrow\forall n\in Z\text{ thì phân so rút gọn toi gian}\)