K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

A B O M I C D E F

MO là trung trực của AI => MO vuông góc AI, có BI vuông góc AI => MO || BI

Ta thấy MA.MI là hai tiếp tuyến kẻ từ M đến (O), MCD là cát tuyến của (O), do đó \(\left(ICAD\right)=-1\)

Vì B nằm trên (O) nên \(B\left(ICAD\right)=-1\), mà MO || BI, MO cắt BC,BA,BD tại E,O,F nên O là trung điểm EF.

4 tháng 12 2017

1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB

2. Cho (O) và đường thẳng d không cắt (O).  Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh ΔOMN cân

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
20 tháng 11 2020

a) Tứ giác MAOB có: \(\widehat{OAM}=90^0\left(0A\perp AM\right);\widehat{OBM}=90^0\left(CB\perp BM\right)\)

=> \(\widehat{OAM}+\widehat{OBM}=180^O\)

=> AOBM nội tiếp (tổng 2 góc đối = 180)

Vì I là tâm=> I là trung điểm OM

b) Tính \(MA^2=3R^2\Rightarrow MC.MD=3R^2\)

c) CM: OM là trung trực AB

=> FA=FB

=> tam giác FAB cân tại F

Gọi H là giao điểm AB và OM

Ta có: OA=OB=AI=R => tam giác OAI đều

=> OAI =60O=> FAB=60(cùng phụ AFI)

Vậy tam giác AFB đều

d) Kẻ EK vuông góc với FB tại K. Ta có:

\(S_{B\text{EF}}=\frac{1}{2}.FB.EK\)

Mà \(EK\le BE\)( TAM giác BEK vuông tại K)

Lại có: \(BE\le OA\)(LIÊN hệ đường kính và dây cung)

=> \(S_{B\text{EF}}\le\frac{1}{2}.R\sqrt{3}.2R=R^2\sqrt{3}\)

GTLN của \(S_{B\text{EF}}=R^2\sqrt{3}\). kHI ĐÓ BE là đường kính (I)

Kẻ đường kính BG của (I). Vì B và (I) cố định nên BG cố
 định . Khi đó vị trí cắt tuyến MCD để \(S_{B\text{EF}}\)đạt GTLN là C là giao điểm của FG với đường tron (O)

19 tháng 3 2022

1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm 

=> ^MAO = ^MBO = 900

Xét tam giác MAOB có ^MAO + ^MBO = 1800

mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn 

2, Xét tam giác MAC và tam giác MDA

^M _ chung 

^MAC = ^MDA ( cùng chắn cung AC ) 

Vậy tam giác MAC ~ tam giác MDA (g.g) 

\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)

3, Ta có AM = MB ( tc tiếp tuyến cắt nhau ) 

OB = OA = R 

Vậy MO là đường trung trực 

Xét tam giác MAO vuông tại A, đường cao AH 

AO^2 = OH . OM ( hệ thức lượng ) 

\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)