K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Đáp án D

Theo bài ra ta có

 

 

 

 

28 tháng 1 2019

Đáp án A

n 0 1 + L 3 6 i → H 1 3 + α

p 2 = m 2 v 2 = 2 m K ; ( 1 )

Từ hình vẽ: 

(1),(2) suy ra  K α = 0 , 25 M e V ; K H = 0 , 089 M e V

K n + ∆ E = K α + K H ⇒ ∆ E = - 1 , 66 M e V

8 tháng 4 2016

\(_2^4 He + _{13}^{27}Al \rightarrow _{15}^{30}P + _0^1n\)

Phản ứng thu năng lượng 

\( K_{He} - (K_{P}+K_{n} )= 2,7MeV.(*)\)

Lại có  \(\overrightarrow v_P = \overrightarrow v_n .(1)\)

=> \(v_P = v_n\)

=> \(\frac{K_P}{K_n} = 30 .(2)\)

Áp dụng định luật bảo toàn động lượng trước và sau phản ứng

\(\overrightarrow P_{He} = \overrightarrow P_{P} + \overrightarrow P_{n} \)

Do \(\overrightarrow P_{P} \uparrow \uparrow \overrightarrow P_{n}\) 

=> \(P_{He} = P_{P} + P_{n} \)

=> \(m_{He}.v_{He} = (m_{P}+ m_n)v_P=31m_nv\) (do \(v_P = v_n = v\))

=> \(K_{He} = \frac{31^2}{4}K_n.(3)\)

Thay (2) và (3) vào (*) ta có

 \(K_{He}-31K_n= 2,7.\)

=> \(K_{He} = \frac{2,7}{1-4/31} = 3,1MeV.\)

 

 

 

1 tháng 4 2017

Khe=31^2/4Kn lam sao ra dc nhu the a

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

27 tháng 3 2015

PT phản ứng: \(_0^1n+_3^6Li\rightarrow_1^3H+_2^4He\)

n 15 30 He H 30 135

Áp dụng định lí hàm số sin trong tam giác ta có:

\(\frac{p_n}{\sin135}=\frac{p_H}{\sin15}=\frac{p_{He}}{\sin30}\)

Suy ra:

\(\frac{p_H}{p_n}=\frac{\sin15}{\sin135}\Rightarrow\frac{p_H^2}{p_n^2}=\frac{\sin^215}{\sin^2135}\Rightarrow\frac{m_HK_H}{m_nK_n}=\frac{\sin^215}{\sin^2135}\Rightarrow K_H=\frac{1.2}{3}.\frac{\sin^215}{\sin^2135}=0,209MeV\)

\(\frac{p_{He}}{p_n}=\frac{\sin30}{\sin135}\Rightarrow\frac{p_{He}^2}{p_n^2}=\frac{\sin^230}{\sin^2135}\Rightarrow\frac{m_{He}K_{He}}{m_nK_n}=\frac{\sin^230}{\sin^2135}\Rightarrow K_{He}=\frac{1.2}{4}.\frac{\sin^230}{\sin^2135}=0,25MeV\)

Năng lượng thu vào = Ktrước - Ksau= 2 - 0,209 - 0,25 = 1,54 MeV 

23 tháng 2 2019

Đáp án C

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

17 tháng 4 2018

Đáp án D

Phươngpháp: sử dụng định luật bảo toàn động lượng và định sin trong tam giác

 

 

Áp dụng định luật bảo toàn động lượng ,ta vẽ được giảnđồ vecto động lượng của phản ứng là:

Áp dụng định hàm số sin trong tam giác ta có:

 

 

 

 

 

 

 

 

Năng lượng thu vào 

 

 

13 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)

Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)

PPPHeXp

Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)

=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)

=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)