Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì n chia hết cho n=>6 chia hết cho n=>n thuộc{1;2;3;6} b)Vì 3n chia hết ch n=>38 chia hết cho n=>n thuộc{1;2;19;38} Nếu n thuộc 19 và 38=>Vô lí vì 19*3 và 38*3>38=>n{1;2} c)Vì n+1 chia hết cho n+1=>n+5-(n+1)=4 chia hết cho n+1 =>n+1 thuộc{1;2;4} Nếu n+1=1=>n=0=>Vô lí(n thuộc N*) Nếu n+1=2=>n=1;nếu n+1=4=>n=3=>n thuộc{1;3} d)=>n-1 thuộc{1;2;4;7;14;28}=>n thuộc{2;3;5;8;15;29}
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
a 2001^2017 -1 chia hết cho 10
ta có 2001^ 2017 -1^2017 chia hết cho 10
ta thấy 2 số này có chung số mũ , ta lại có
2001-1=2000 ( 2000 chia hết cho 10)
ta chứng minh được 2001^2017 -1 chia hết cho 10
còn những câu khác bạn tự làm nha
34n sẽ có tận cùng bằng 1
(......1) - (.....6) = (......5) chia hết cho 5 (đpcm)
a: \(\Leftrightarrow3n+3+7⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;6\right\}\)
b: \(\Leftrightarrow n+2+5⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay n=3
c: \(\Leftrightarrow n+2+10⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{0;3;8\right\}\)
d: \(\Leftrightarrow2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6\right\}\)