K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
30 tháng 8 2015

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

28 tháng 7 2018

#naruto Có ai hỏi bạn đâu mà trả lời

25 tháng 9 2016

Khó wá! Ai giải giúp mk vs.

Ai nhanh nhất mk k cho!

3 tháng 3 2020

a, có số đo 4 góc của tứ giác ABCD lafn lượt tỉ lệ với 5, 8, 13, 10

\(\Rightarrow\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)

\(\Rightarrow\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{5+8+13+10}=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\) mà ^A + ^B + ^C + ^D = 360 do tứ giác ... 

\(\Rightarrow\frac{360}{36}=10=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)

\(\Rightarrow\widehat{A}=50;\widehat{B}=80;\widehat{C}=130;\widehat{D}=100\)

b, xét ΔABF có : ^ABF + ^BAF  + AFB = 180 (định lí)

^ABF = 50 ; ^ABF = 80 (câu a)

=> ^AFB = 50 

FM là phân giác của ^AFB 

=> ^MFD = ^AFB : 2 (tính chất)

=> ^MFD = 50 : 2 = 25

^ADC + ^CDF = 180 (kề bù) mà ^ADC = 100 (câu a) => ^CDF = 80

ΔDMF có : ^MDA + ^DFM + ^DMF = 180 (định lí)

=> ^DMF = 75                        (1)

ΔADE có : ^ADE + ^DAE + ^AED = 180 (Định lí)

^EAD = 50; ^ADE = 100 

=> ^AED = 30                                      và (1)

ΔENM có : ^ENM + ^EMN + ^MNE = 180

=> ^ENM = 75 = ^EMN 

=>ΔEMN cân tại E mà EO là pg của ^NEM (gt)

=> EO đồng thời là trung tuyến của ΔNEM (định lí)

=> O là trung điểm của MN (định nghĩa)

hình tự kẻ

16 tháng 6 2016

Khó quá!