Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a,\(\frac{x-1}{3}=2-\frac{x}{-2}\)
\(\Leftrightarrow\frac{x-1}{3}=\frac{-4-x}{-2}\Leftrightarrow-2x+2=-12-3x\Leftrightarrow x=-14\)
b, \(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow7x-7=6x+30\Leftrightarrow x=37\)
c, \(\frac{2x-1}{4}=\frac{4}{2x-1}\Leftrightarrow\left(2x-1\right)^2=16\)
\(\Leftrightarrow\left(2x-1\right)^2-4^2=0\Leftrightarrow\left(2x-5\right)\left(2x+3\right)=0\Leftrightarrow x=\frac{5}{2};-\frac{3}{2}\)
1a) Để \(\frac{6x+5}{2x+1}\)là số nguyên thì 6x+5 chia hết cho 2x+1
=> (6x+3)+2 chia hết cho 2x+1
=> 2 chia hết cho 2x+1 ( vì 6x+3 chia hết cho 2x+1)
=> 2x+1 thuộc ước của 2={ 1;-1;2;-2}
Với 2x+1=1=> x=0
Với 2x+1=-1=> x=-1
Với 2x+1=...........
Với 2x+1=.......
Vậy x=.............
b) Để \(\frac{3x+9}{x-4}\)là số nguyên thì 3x+9 chia hết cho x-4
=> (3x-12)+21 chia hết x-4
=> 21 chia hết cho x-4 ( vì 3x-12 chia hết cho x-4)
=> x-4 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Với x-4=1=> x=5
Với x-4=-1=> x=3
....
....
....
....
...
Vậy x=......
2) \(\left(x+\frac{1}{2}+x+\frac{1}{3}\right)+\left(2x+\frac{1}{3}+2x+\frac{1}{4}\right)=0\)
=> \(6x+\frac{17}{12}=0\)
=> \(x=\frac{0-\frac{17}{12}}{6}=-\frac{89}{12}\)
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Ta có : \(|2x^2+|x-5||=2x^2+5\)
mà \(2x^2\ge0\forall x\Rightarrow2x^2+5\ge5\)
\(\Rightarrow|2x^2+|x+5||\ge5\)
\(\Rightarrow\orbr{\begin{cases}2x^2+|x+5|\ge5\\2x^2+|x+5|\le-5\end{cases}}\)
Nhưng \(2x^2\ge0\forall x,|x+5|\ge0\forall x\)\(\Rightarrow2x^2+|x+5|\ge0\forall x\)
\(\Rightarrow2x^2+|x-5|\ge5\)
\(\Rightarrow|2x^2+|x-5||=2x^2+|x-5|=2x^2+5\)
\(\Rightarrow|x-5|=5\)
\(\Rightarrow\orbr{\begin{cases}x-5=5\\x-5=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=10\\x=0\end{cases}}\)
Vậy \(x=10\)hoặc \(x=0\)
a) 1/7 - 3/5x = 3/5
3/5x= 1/7 - 3/5
3/5x = -16/35
x= -16/35 : 3/5 = -16/21
b) 3/7 - 1/2x = 5/3
1/2x = 3/7 - 5/3 = -26/21
x= -26/21 : 1/2 = -52/21
a) \(A=x^3+2x^2+7x-4-x-x^3-2x^2+1\)
\(A=\left(x^3-x^3\right)+\left(2x^2-2x^2\right)+\left(7x-x\right)+\left(-4+1\right)\)
\(A=6x-3\)
b) Thay x = (-5)
\(\Rightarrow A=6.\left(-5\right)-3\)
\(\Rightarrow A=-30-3\)
\(\Rightarrow A=-33\)
c) \(A=6x-3\)
\(10=6x-3\)
\(13=6x\)
\(x=\frac{13}{6}\)
thank you bro