Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A(x) = 2x–3x2–3+4x3–x2–2x–5 = \(4x^3-4x^2-4x-8.\)
B(x) = 3x–4x3–1+3x2–5x–3x2\(=-4x^3-2x-1\)
b) M(x) = A(x) + B(x) \(=-4x^2-6x-9\)
c) Để M(x) = –9 => M(x) = \(=-4x^2-6x-9\)= -9
\(=-4x^2-6x=0\)
\(\Leftrightarrow-2x\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-2x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=3\Leftrightarrow x=\frac{3}{2}\end{cases}}}\)
d) Ta có: đa thức K(x) = 5x–1
\(\Leftrightarrow K\left(x\right)=5x-1=0\)
\(\Leftrightarrow5x=1\)
\(\Leftrightarrow x=\frac{1}{5}\)
Vậy....
a) A(x)= -2x\(^6\)+ 5x\(^5\)+ x\(^4\)+ ( 2x + x )
= -2x\(^6\) + 5x\(^5\)+ x\(^4\)+ 3x
Bậc : 6
b) C(x)= A(x) + B(x)
A(x) + B(x) = -2x\(^6\)+ 5x\(^5\)+ x\(^4\)+3x + 6x\(^6\)- 5 x\(^5\)+2x\(^4\)+ 2x + 1
= (-2x\(^6\)+ 6x\(^6\))+(5x\(^5\)- 5x\(^5\))+(x\(^4\)+2x\(^4\))+(3x+2x)+1
=4x\(^6\)+3x\(^4\)+5x+1
Bậc :6
c) Đa thức C(x) không có nghiệm( vô nghiệm )
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
mh biết làm bài này rùi bn có cần mih đang lên cho bn ko?
a) h(x) = f(x) + g(x)
= 9 - x5 + 4x - 2x3 + x2 - 7x4 + x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
= (-x5 + x5) + (-7x4 + 7x4) + (-2x3 + 2x3) + x2 + 2x2 + 4x - 3x + 9 - 9
= 3x2 + x
vậy h(x) = 3x2 + x
b) ta có: h(x) = 3x2 + x
=> 3x2 + x = 0
từ đó bn phân tích rùi sẽ ra nếu ko ra thì đa thức ko có nghiệm
Tổng các hệ số của đa thức bằng giá trị của đa thức đó tại x = 1
cứ thế áp dụng vào
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
1)x2 +2x=0
=>x(x+2)=0
Xét x=0 hoặc x+2=0
x=-2
Vậy x=0 hoặc x=-2
2)x2 +2x-3=0
=x2 -1x+3x-3=0
=x(x-1)+3(x-1)=0
=(x-1)(x-3)=0
Xét x-1=0 hoặc x-3=0
x=1 x=3
Tự KL nha
a: A(x)+B(x)
\(=2x^3+3x^3+x^2-3x+3+5x^3+x^2+6x-2x-11\)
\(=10x^3+2x^2+x-8\)
b: A(x)-B(x)
\(=2x^3+3x^3+x^2-3x+3-5x^3-x^2-6x+2x+11\)
\(=-7x+14\)
c: Đặt C(x)=A(x)+B(x)
=>\(C\left(x\right)=10x^3+2x^2+x-8\)
\(C\left(1\right)=10\cdot1^3+2\cdot1^2+1-8=10+2+1-8=5\)>0
=>x=1 không là nghiệm của C(x)