K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2024

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

19 tháng 3 2019

Gọi \(A=\frac{n+1}{n-2}\)

Để \(A\inℤ\)thì : \(n+1⋮n-2\)

                            = \(\left(n-2\right)+3⋮\left(n-2\right)\)

                            => \(3⋮\left(n-2\right)\)( vì \(\left(n-2\right)⋮\left(n-2\right)\))

                            => \(n-2\in U\left(3\right)=\){-1; 1; -3; 3}

                            => \(n\in\left\{1;3;-1;5\right\}\)

1 tháng 4 2019

\(\frac{n+1}{n-2}\)\(=\)\(\frac{n-2+3}{n-2}\)\(=\)\(\frac{n-2}{n-2}\)\(+\)\(\frac{3}{n-2}\)\(=\)\(1\)\(+\)\(\frac{3}{n-2}\)

\(để\)\(\frac{n+1}{n-2}\)\(có\)\(giá\)\(trị\)\(nguyên\)\(thì\)\(\frac{3}{n-2}\)\(pk\)\(có\)\(giá\)\(trị\)\(nguyên\)\(=>\)\(3⋮n-2\)

\(=>n-2\inƯ\left(3\right)\)\(=>....\)

\(Từ\)\(ó\)\(tự\)\(suy\)\(ra...\)

15 tháng 11 2023

Vũ™©®×÷|

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

11 tháng 2 2018

Các bn giúp mk vs mik đg cần gấp lắm nhé

13 tháng 5 2016

Bài này hình như bạn vừa ra trong online math đúng ko

13 tháng 5 2016

Đúng vậy!

 

29 tháng 3 2020

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(=\frac{2n+1+3n-5-4n+5}{n-3}\)

\(=\frac{n+1}{n-3}\)

a) Để A là phân số thì \(n-3\ne0\)

\(\Leftrightarrow n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

Ta có n+1=n-3+4

=> 4 \(⋮\)n-3

=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng

n-3-4-2-1124
n-112457
29 tháng 3 2020

Đặt  \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)

a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)

b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)

A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 31-12-23-36-6
n4251609-3