K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a, ĐKXĐ: \(-1\le x;y\le1\)
Từ giả thiết ta có:
\(2-2x\sqrt{1-y^2}-2y\sqrt{1-x^2}=0\)
\(\Leftrightarrow\left(1-y^2-2x\sqrt{1-y^2}+x^2\right)+\left(1-x^2-2y\sqrt{1-x^2}+y^2\right)=0\)\(\Leftrightarrow\left(\sqrt{1-y^2}-x\right)^2+\left(\sqrt{1-x^2}-y\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{1-y^2}-x=0\\\sqrt{1-x^2}-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{1-y^2}=x\\\sqrt{1-x^2}=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}0\le x;y\le1\\1-y^2=x^2\\1-x^2=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}0\le x;y\le1\\x^2+y^2=1\end{matrix}\right.\)
Vậy với x,y thỏa mãn hệ thức ở đề bài và \(0\le x;y\le1\) thì \(x^2+y^2=1\) (đpcm)
Câu c)
\((x+y)^3=(10x+y)^2\Leftrightarrow x+y=\left(\frac{10x+y}{x+y}\right)^2=\left(\frac{9x}{x+y}+1\right)^2\)
Vì \(x,y\in\mathbb{Z}^+\Rightarrow \frac{9x}{x+y}\in\mathbb{Z}\). Đặt \(9x=k(x+y)\)
Vì \(x,y>0\Rightarrow 0< k<9\)
Khi đó thay vào phương trình ta có
\(\left\{\begin{matrix} x+y=(k+1)^2\\ 9x=k(x+y)\end{matrix}\right.\Rightarrow 9x=k(k+1)^2\Rightarrow x=\frac{k(k+1)^2}{9}\)
Ta đi tìm \(k\) sao cho \(k(k+1)^2\vdots 9\). Do \(0< k<9\Rightarrow k=2,5,8\)
Thay vào, ta thu được bộ \((x,y)=(2,7),(20,16),(72,9)\)