K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

a, ĐKXĐ: \(-1\le x;y\le1\)
Từ giả thiết ta có:
\(2-2x\sqrt{1-y^2}-2y\sqrt{1-x^2}=0\)

\(\Leftrightarrow\left(1-y^2-2x\sqrt{1-y^2}+x^2\right)+\left(1-x^2-2y\sqrt{1-x^2}+y^2\right)=0\)\(\Leftrightarrow\left(\sqrt{1-y^2}-x\right)^2+\left(\sqrt{1-x^2}-y\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{1-y^2}-x=0\\\sqrt{1-x^2}-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{1-y^2}=x\\\sqrt{1-x^2}=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}0\le x;y\le1\\1-y^2=x^2\\1-x^2=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}0\le x;y\le1\\x^2+y^2=1\end{matrix}\right.\)

Vậy với x,y thỏa mãn hệ thức ở đề bài và \(0\le x;y\le1\) thì \(x^2+y^2=1\) (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Câu c)

\((x+y)^3=(10x+y)^2\Leftrightarrow x+y=\left(\frac{10x+y}{x+y}\right)^2=\left(\frac{9x}{x+y}+1\right)^2\)

\(x,y\in\mathbb{Z}^+\Rightarrow \frac{9x}{x+y}\in\mathbb{Z}\). Đặt \(9x=k(x+y)\)

\(x,y>0\Rightarrow 0< k<9\)

Khi đó thay vào phương trình ta có

\(\left\{\begin{matrix} x+y=(k+1)^2\\ 9x=k(x+y)\end{matrix}\right.\Rightarrow 9x=k(k+1)^2\Rightarrow x=\frac{k(k+1)^2}{9}\)

Ta đi tìm \(k\) sao cho \(k(k+1)^2\vdots 9\). Do \(0< k<9\Rightarrow k=2,5,8\)

Thay vào, ta thu được bộ \((x,y)=(2,7),(20,16),(72,9)\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

20 tháng 4 2020

Max=3,222222