Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
Áp dụng vào bài
\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2
Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)
\(\Rightarrow2y+x+z=2k+2q+2\)
\(\Leftrightarrow x+z=2k+2q+2-2y\)
\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)
Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2
Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)
\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)
Vậy: \(A⋮6\forall x,y,z\in Z\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Trả lời :
Tham khảo link này : https://olm.vn/hoi-dap/detail/6401290031.html
- Hok tốt !
^_^
a, \(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)\(=x^2+2xy+y^2+2zx+2zy+z^2=x^2+y^2+z^2+2xy+2yz+2zx\)(đpcm)
b, \(\left(x+y+z\right)^3=\left(\left(x+y\right)+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+z\left(x+y+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
Ta có: \(x+y+z=0\)
\(\Rightarrow\) \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(A=x\left(x+y\right)\left(x+z\right)=x\left(-z\right)\left(-y\right)=xyz\)
\(B=y\left(y+z\right)\left(y+x\right)=y\left(-x\right)\left(-z\right)=xyz\)
\(B=z\left(z+x\right)\left(y+z\right)=z\left(-y\right)\left(-x\right)=xyz\)
\(\Rightarrow A=B=C\)
Tham khảo nhé~