Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)
\(\Leftrightarrow x-2< 0\) ( vì \(-1< 0\))
\(\Leftrightarrow x< 2\)
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
ĐKXĐ:\(x\ne-3;x\ne3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
\(=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\frac{3x}{x+3}\)
b
\(\left|x-2\right|=1\Rightarrow x-2=1\left(h\right)x-2=-1\Rightarrow x=3;x=1\)
Tại \(x=3\) thì \(A=-\frac{3\cdot3}{3+3}=-\frac{9}{6}=-\frac{3}{2}\)
Tại \(x=1\) thì \(A=-1\cdot\frac{3}{1+3}=-\frac{3}{4}\)
c
Để A nguyên thì \(\frac{3x}{x+3}\) nguyên
\(\Rightarrow3x⋮x+3\)
\(\Rightarrow3\left(x+3\right)-9⋮x+3\)
\(\Rightarrow9⋮x+3\)
\(\Rightarrow x+3\in\left\{1;3;9;-1;-3;-9\right\}\)
\(\Rightarrow x\in\left\{-2;0;6;-4;-6;-12\right\}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
a, ĐK : \(x\ne\pm3;\frac{1}{2}\)
\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)
\(=\left(\frac{\left(x-1\right)\left(x-3\right)+2\left(x+3\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{2x-1-2x-1}{2x+1}\right)\)
\(=\frac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}:\left(-\frac{2}{2x+1}\right)\)
\(=\frac{-2x+6}{\left(x+3\right)\left(x-3\right)}.\frac{-\left(2x+1\right)}{2}=\frac{2x+1}{x+3}\)
b, Ta có : \(\left|x+1\right|=\frac{1}{2}\)
TH1 : \(x+1=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2}\)
Thay vào biểu thức A ta được : \(\frac{-1+1}{-\frac{1}{2}+3}=0\)
TH2 : \(x+1=-\frac{1}{2}\Leftrightarrow x=-\frac{3}{2}\)
Thay vào biểu thức A ta được : \(\frac{-3+1}{-\frac{3}{2}+3}=\frac{-2}{\frac{3}{2}}=-\frac{4}{3}\)
c, Ta có : \(P=\frac{x}{2}\Rightarrow\frac{2x+1}{x+3}=\frac{x}{2}\Rightarrow4x+2=x^2+3x\)
\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
b, Ta có : \(\frac{2x+1}{x+3}=\frac{2\left(x+3\right)-5}{x+3}=2-\frac{5}{x+3}\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x + 3 | 1 | -1 | 5 | -5 |
x | -2 | -4 | 2 | -8 |
a, DKXD: \(x\ne\pm3\)
\(A=\left(\frac{x}{x+3}+\frac{x-1}{x-3}+\frac{2x^2+x-3}{9-x^2}\right):\frac{-2}{x-3}\)
\(=\left(\frac{x\left(x+3\right)+\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{-2x^2-x+3}{x^2-9}\right):\frac{-2}{x-3}\)
\(=\left(\frac{2x^2+5x-3}{x^2-9}+\frac{-2x^2-x+3}{x^2-9}\right):\frac{-2}{x-3}\)
\(=\frac{4x}{x^2-9}:\frac{-2}{x-3}=\frac{4x}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x-3}{-2}=\frac{4x}{-2\left(x+3\right)}=\frac{-2x}{x+3}\)
b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3=0\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
Thay x=-1 =>\(A=\frac{-2.\left(-1\right)}{-1+3}=1\)
thay x=3 =>\(A=\frac{-2.3}{3+3}=-1\)
c, De \(A\in Z\Leftrightarrow x+3\in U\left(-2\right)=\left\{1;-1;2;-2\right\}\)
<=>x thuoc {-2;-4;-1;-5}
ĐK: \(x\ne\pm3\)
\(A=\left(\frac{x}{x+3}+\frac{x-1}{x-3}+\frac{2x^2+x-3}{9-x^2}\right):\frac{-2}{x-3}\)
\(=\left(\frac{x\left(x-3\right)+\left(x+3\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}+\frac{-2x^2-x+3}{x^2-9}\right).\frac{x-3}{-2}\)
\(=\left(\frac{x^2-3x+x^2+2x-3}{\left(x-3\right)\left(x+3\right)}+\frac{-2x^2-x+3}{\left(x-3\right)\left(x+3\right)}\right).\frac{x-3}{-2}\)
\(=\frac{-2x}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{-2}=\frac{x}{x+3}\)
b, \(x^2-2x-3=0\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
x = 3 không thỏa mãn ĐKXĐ
Với x = -1 (thỏa mãn ĐKXĐ) thì \(A=\frac{x}{x+3}=\frac{-1}{-1+3}=-\frac{1}{2}\)
c, \(A\in Z\Rightarrow\frac{x}{x+3}\in Z\Rightarrow x⋮\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)-3⋮\left(x+3\right)\Rightarrow-3⋮\left(x+3\right)\Rightarrow x+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-6;-4;-2;0\right\}\) (thỏa mãn điều kiện)