K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)

\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))

\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)

\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)

25 tháng 11 2022

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)}\)

b: Để A là số nguyên thì \(\left(\sqrt{x}-1\right)^2⋮\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)\)

=>x=0

24 tháng 11 2022

a: 

Sửa đề: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{x}{x-1}\right)\)

\(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)

\(=\dfrac{x-1-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{-x+\sqrt{x}+1}=\dfrac{-\sqrt{x}+3}{x-\sqrt{x}-1}\)

b: Để A là số nguyên thì \(\sqrt{x}\left(-\sqrt{x}+3\right)⋮x-\sqrt{x}-1\)

=>\(-x+3\sqrt{x}⋮x-\sqrt{x}-1\)

=>\(-x+\sqrt{x}+1+2\sqrt{x}-1⋮x-\sqrt{x}-1\)

=>\(x=0\)

 

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

30 tháng 4 2018

Bài 1:

a)Với x > 0;x ≠ 4 ta có:

\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)

\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4}{x-4}\)

c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)

30 tháng 4 2018

Bài 2:

a)Với a > 0;a ≠ 1;a ≠ 2 ta có

\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)

b)Ta có:

\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)

P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)

\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)

\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)

\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)

\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)

\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)

\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)

\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)

Vậy a = 6

3 tháng 9 2018

Bài 1:

A.\(\left(\sqrt{x}+2\right)\) = -1 (ĐK: \(x\ge0\)

\(\Leftrightarrow\dfrac{1}{x-4}\left(\sqrt{x}+2\right)=-1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-1\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}-2}=-1\)

\(\Leftrightarrow\sqrt{x}-2=-1\)

\(\Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1\left(TM\right)\)

Vậy x = 1

Bài 2: ĐK: \(x\ge0\)

Để \(B\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3\right\}\)\(\Leftrightarrow x\in\left\{1\right\}\)

Bài 3:

a, Ta có: \(x+\sqrt{x}+1=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+1\\ =\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Ta có: 2 > 0 và \(x+\sqrt{x}+1>0\Rightarrow C>0\)\(x\ne1\)

b, ĐK: \(x\ge0,x\ne1\)

\(C=\dfrac{2}{x+\sqrt{x}+1}\)

Ta có: \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)

Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow x=0\left(TM\right)\)

Vậy MaxC = 2 khi x = 0

Còn cái GTNN chưa tính ra được, để sau nha

Bài 4: ĐK: \(x\ge0,x\ne1\)

\(D=\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)

\(=\sqrt{x}-1\)

\(D=3\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=2\left(TM\right)\)

\(D=x-3\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}-1=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(L\right)\\x=9\left(TM\right)\end{matrix}\right.\)

Bài 5: \(E< -1\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}+1< 0\Leftrightarrow\dfrac{-3x+2x+4\sqrt{x}}{2x+4\sqrt{x}}< 0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}-x}{2x+4\sqrt{x}}< 0\Leftrightarrow\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)

Ta có: \(\sqrt{x}>0\Leftrightarrow x>0\Leftrightarrow2x+4\sqrt{x}>0\)\(\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)\(\Rightarrow\sqrt{x}\left(4-\sqrt{x}\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\left(L\right)\\4-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\4-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\0< x< 16\end{matrix}\right.\)

Tìm GTNN của: a. \(A=x-\sqrt{x}\) b. \(B=x-\sqrt{x-2005}\) c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\) d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\) e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\) f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\) g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\) h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\) i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\) k. \(K=x+y\) biết x và y là các số dương thỏa mãn...
Đọc tiếp

Tìm GTNN của:

a. \(A=x-\sqrt{x}\)

b. \(B=x-\sqrt{x-2005}\)

c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)

f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)

h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)

i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)

k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )

l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)

m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)

n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)

o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1

p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)

q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)

r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)

s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)

t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)

u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1

v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)

w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)

x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)

y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2

z. \(Z=3^x+3^y\) với x+y=4

0
30 tháng 9 2018

a, Mk làm hơi tắt chút bạn thông cảm nha . mk vội ý mà ok

\(A=\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right).\left(x-3\sqrt{x}+2\right)\)

\(A=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

30 tháng 9 2018

Câu c : \(A\in Z\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{1}{\sqrt{x}}\in Z\)

Để : \(1-\dfrac{1}{\sqrt{x}}\in Z\) thì \(\sqrt{x}\inƯ\left(1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=1\)