\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}+2017}{1+\frac{1}{2}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

17 tháng 4 2017

Mình giúp bạn nha!

A = 2017/1 + 2017/2 + 2017/3 + . . . + 2017/2018   /   2017/1 + 2016/2 + 2015/3 + . . .+ 1/2017

    = 2017 . ( 1 + 1/2 + 1/3 + . . . +1/2018 )   /   ( 2017 . 2016 . 2015 . . . 1) . ( 1 + 1/2 + 1/3 +. . . + 1/2017 )

    = 1/2016 . 2015 . 2014. . . 1

k mình nha

17 tháng 4 2017

Dễ mà, bạn hãy suy nghĩ đi

8 tháng 5 2018

\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{1+\left(1+\frac{2016}{2}\right)+\left(1+\frac{2015}{3}\right)+...+\left(1+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=2018\)

8 tháng 5 2018

Ta có : 

\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{\left(\frac{2017}{1}-1-1-...-1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=2018\)

Vậy \(A=2018\)

Chúc bạn học tốt ~ 

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

23 tháng 4 2017

Ta có: \(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)\)

\(=\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2018}\)

\(=2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

Giờ ta thế vào bài toán ban đầu được

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

\(=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}\)

\(=\frac{2017}{2018}\)